direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×Dic3, C23.22D6, C3⋊5(C4×D4), C12⋊3(C2×C4), (C3×D4)⋊3C4, C2.5(S3×D4), (C6×D4).4C2, (C2×D4).7S3, C4⋊1(C2×Dic3), (C2×C4).49D6, C6.37(C2×D4), C4⋊Dic3⋊13C2, (C4×Dic3)⋊4C2, C6.28(C4○D4), C6.D4⋊7C2, (C2×C6).49C23, C6.25(C22×C4), C22⋊2(C2×Dic3), C2.5(D4⋊2S3), (C2×C12).32C22, (C22×Dic3)⋊4C2, C2.6(C22×Dic3), C22.25(C22×S3), (C22×C6).17C22, (C2×Dic3).37C22, (C2×C6)⋊3(C2×C4), (C2×D4)○(C2×Dic3), SmallGroup(96,141)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×Dic3
G = < a,b,c,d | a4=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 178 in 94 conjugacy classes, 51 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Dic3, C2×Dic3, C2×Dic3, C2×C12, C3×D4, C22×C6, C4×D4, C4×Dic3, C4⋊Dic3, C6.D4, C22×Dic3, C6×D4, D4×Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22×C4, C2×D4, C4○D4, C2×Dic3, C22×S3, C4×D4, S3×D4, D4⋊2S3, C22×Dic3, D4×Dic3
Character table of D4×Dic3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | -i | i | -i | -i | i | -i | i | i | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | -i | i | -i | i | -i | i | i | -i | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | i | -i | i | i | -i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | i | -i | i | -i | i | -i | -i | i | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | i | -i | i | -i | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | -i | -i | i | i | i | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | -i | i | -i | i | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | i | i | -i | -i | -i | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ24 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ27 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 38 45 33)(8 39 46 34)(9 40 47 35)(10 41 48 36)(11 42 43 31)(12 37 44 32)
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 38)(8 39)(9 40)(10 41)(11 42)(12 37)(13 30)(14 25)(15 26)(16 27)(17 28)(18 29)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
G:=sub<Sym(48)| (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,38,45,33)(8,39,46,34)(9,40,47,35)(10,41,48,36)(11,42,43,31)(12,37,44,32), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,38)(8,39)(9,40)(10,41)(11,42)(12,37)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)>;
G:=Group( (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,38,45,33)(8,39,46,34)(9,40,47,35)(10,41,48,36)(11,42,43,31)(12,37,44,32), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,38)(8,39)(9,40)(10,41)(11,42)(12,37)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45) );
G=PermutationGroup([[(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,38,45,33),(8,39,46,34),(9,40,47,35),(10,41,48,36),(11,42,43,31),(12,37,44,32)], [(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,38),(8,39),(9,40),(10,41),(11,42),(12,37),(13,30),(14,25),(15,26),(16,27),(17,28),(18,29),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)]])
D4×Dic3 is a maximal subgroup of
Dic3⋊4D8 D4.S3⋊C4 Dic3⋊6SD16 Dic3.D8 D4⋊Dic6 D4.Dic6 D4.2Dic6 D4⋊S3⋊C4 Dic3⋊D8 D8⋊Dic3 (C6×D8).C2 Dic3⋊3SD16 SD16⋊Dic3 (C3×D4).D4 C4×D4⋊2S3 D4⋊5Dic6 D4⋊6Dic6 C4×S3×D4 C42⋊13D6 C42.108D6 C24.67D6 C24.43D6 C24.44D6 C24.46D6 C12⋊(C4○D4) Dic6⋊19D4 C4⋊C4.178D6 C6.342+ 1+4 C6.702- 1+4 C6.712- 1+4 C4⋊C4⋊21D6 C6.732- 1+4 C6.432+ 1+4 C6.452+ 1+4 C6.462+ 1+4 C6.1152+ 1+4 C6.472+ 1+4 C4⋊C4.197D6 C6.802- 1+4 C6.1222+ 1+4 C6.852- 1+4 C42.139D6 C42.234D6 C42.143D6 C42.144D6 C42.166D6 C42.238D6 Dic6⋊11D4 C42.168D6 C24.49D6 C24.53D6 C6.1042- 1+4 C6.1442+ 1+4 C6.1452+ 1+4 D12⋊Dic3 C62.115C23 D20⋊8Dic3 Dic15⋊16D4
D4×Dic3 is a maximal quotient of
C24.58D6 C24.19D6 C4⋊C4⋊5Dic3 C4⋊C4⋊6Dic3 C42.47D6 C12⋊3M4(2) D8⋊Dic3 SD16⋊Dic3 Q16⋊Dic3 D8⋊5Dic3 D8⋊4Dic3 C24.29D6 C24.30D6 D12⋊Dic3 C62.115C23 D20⋊8Dic3 Dic15⋊16D4
Matrix representation of D4×Dic3 ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 12 | 0 |
5 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 12 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,0,12,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,12,0,0,0,1,0],[5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,1,1,0,0,0,0,12] >;
D4×Dic3 in GAP, Magma, Sage, TeX
D_4\times {\rm Dic}_3
% in TeX
G:=Group("D4xDic3");
// GroupNames label
G:=SmallGroup(96,141);
// by ID
G=gap.SmallGroup(96,141);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,188,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export