Extensions 1→N→G→Q→1 with N=2- 1+4 and Q=C6

Direct product G=N×Q with N=2- 1+4 and Q=C6
dρLabelID
C6×2- 1+496C6xES-(2,2)192,1535

Semidirect products G=N:Q with N=2- 1+4 and Q=C6
extensionφ:Q→Out NdρLabelID
2- 1+4⋊C6 = D8.A4φ: C6/C1C6 ⊆ Out 2- 1+4324-ES-(2,2):C6192,1019
2- 1+42C6 = C2×D4.A4φ: C6/C2C3 ⊆ Out 2- 1+432ES-(2,2):2C6192,1503
2- 1+43C6 = 2- 1+43C6φ: C6/C2C3 ⊆ Out 2- 1+4324ES-(2,2):3C6192,1504
2- 1+44C6 = C3×D4.8D4φ: C6/C3C2 ⊆ Out 2- 1+4484ES-(2,2):4C6192,887
2- 1+45C6 = C3×D4○SD16φ: C6/C3C2 ⊆ Out 2- 1+4484ES-(2,2):5C6192,1466
2- 1+46C6 = C3×Q8○D8φ: C6/C3C2 ⊆ Out 2- 1+4964ES-(2,2):6C6192,1467
2- 1+47C6 = C3×C2.C25φ: trivial image484ES-(2,2):7C6192,1536

Non-split extensions G=N.Q with N=2- 1+4 and Q=C6
extensionφ:Q→Out NdρLabelID
2- 1+4.C6 = SD16.A4φ: C6/C1C6 ⊆ Out 2- 1+4324ES-(2,2).C6192,1018
2- 1+4.2C6 = C3×D4.10D4φ: C6/C3C2 ⊆ Out 2- 1+4484ES-(2,2).2C6192,889

׿
×
𝔽