Copied to
clipboard

G = C2xD4.A4order 192 = 26·3

Direct product of C2 and D4.A4

direct product, non-abelian, soluble

Aliases: C2xD4.A4, 2- 1+4:2C6, SL2(F3).10C23, D4.4(C2xA4), (C2xD4).2A4, C4.A4:7C22, C2.8(C23xA4), (C22xQ8):4C6, (C2x2- 1+4):C3, C23.28(C2xA4), C4.10(C22xA4), Q8.3(C22xC6), C22.8(C22xA4), (C22xSL2(F3)):3C2, (C2xSL2(F3)):2C22, C4oD4:(C2xC6), (C2xQ8):(C2xC6), (C2xC4oD4):2C6, (C2xC4.A4):8C2, (C2xC4).13(C2xA4), SmallGroup(192,1503)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C2xD4.A4
C1C2Q8SL2(F3)C2xSL2(F3)C22xSL2(F3) — C2xD4.A4
Q8 — C2xD4.A4
C1C22C2xD4

Generators and relations for C2xD4.A4
 G = < a,b,c,d,e,f | a2=b4=c2=f3=1, d2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=b2d, fdf-1=b2de, fef-1=d >

Subgroups: 573 in 204 conjugacy classes, 51 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C12, C2xC6, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C2xQ8, C4oD4, C4oD4, SL2(F3), C2xC12, C3xD4, C22xC6, C22xQ8, C22xQ8, C2xC4oD4, C2xC4oD4, 2- 1+4, 2- 1+4, C2xSL2(F3), C2xSL2(F3), C4.A4, C6xD4, C2x2- 1+4, C22xSL2(F3), C2xC4.A4, D4.A4, C2xD4.A4
Quotients: C1, C2, C3, C22, C6, C23, A4, C2xC6, C2xA4, C22xC6, C22xA4, D4.A4, C23xA4, C2xD4.A4

Smallest permutation representation of C2xD4.A4
On 32 points
Generators in S32
(1 24)(2 21)(3 22)(4 23)(5 25)(6 26)(7 27)(8 28)(9 19)(10 20)(11 17)(12 18)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(2 4)(5 7)(9 11)(14 16)(17 19)(21 23)(25 27)(30 32)
(1 18 3 20)(2 19 4 17)(5 14 7 16)(6 15 8 13)(9 23 11 21)(10 24 12 22)(25 30 27 32)(26 31 28 29)
(1 15 3 13)(2 16 4 14)(5 19 7 17)(6 20 8 18)(9 27 11 25)(10 28 12 26)(21 32 23 30)(22 29 24 31)
(5 19 16)(6 20 13)(7 17 14)(8 18 15)(9 32 25)(10 29 26)(11 30 27)(12 31 28)

G:=sub<Sym(32)| (1,24)(2,21)(3,22)(4,23)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,4)(5,7)(9,11)(14,16)(17,19)(21,23)(25,27)(30,32), (1,18,3,20)(2,19,4,17)(5,14,7,16)(6,15,8,13)(9,23,11,21)(10,24,12,22)(25,30,27,32)(26,31,28,29), (1,15,3,13)(2,16,4,14)(5,19,7,17)(6,20,8,18)(9,27,11,25)(10,28,12,26)(21,32,23,30)(22,29,24,31), (5,19,16)(6,20,13)(7,17,14)(8,18,15)(9,32,25)(10,29,26)(11,30,27)(12,31,28)>;

G:=Group( (1,24)(2,21)(3,22)(4,23)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,4)(5,7)(9,11)(14,16)(17,19)(21,23)(25,27)(30,32), (1,18,3,20)(2,19,4,17)(5,14,7,16)(6,15,8,13)(9,23,11,21)(10,24,12,22)(25,30,27,32)(26,31,28,29), (1,15,3,13)(2,16,4,14)(5,19,7,17)(6,20,8,18)(9,27,11,25)(10,28,12,26)(21,32,23,30)(22,29,24,31), (5,19,16)(6,20,13)(7,17,14)(8,18,15)(9,32,25)(10,29,26)(11,30,27)(12,31,28) );

G=PermutationGroup([[(1,24),(2,21),(3,22),(4,23),(5,25),(6,26),(7,27),(8,28),(9,19),(10,20),(11,17),(12,18),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(2,4),(5,7),(9,11),(14,16),(17,19),(21,23),(25,27),(30,32)], [(1,18,3,20),(2,19,4,17),(5,14,7,16),(6,15,8,13),(9,23,11,21),(10,24,12,22),(25,30,27,32),(26,31,28,29)], [(1,15,3,13),(2,16,4,14),(5,19,7,17),(6,20,8,18),(9,27,11,25),(10,28,12,26),(21,32,23,30),(22,29,24,31)], [(5,19,16),(6,20,13),(7,17,14),(8,18,15),(9,32,25),(10,29,26),(11,30,27),(12,31,28)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B4A4B4C···4H6A···6F6G···6N12A12B12C12D
order122222222233444···46···66···612121212
size111122226644226···64···48···88888

38 irreducible representations

dim11111111333344
type++++++++-
imageC1C2C2C2C3C6C6C6A4C2xA4C2xA4C2xA4D4.A4D4.A4
kernelC2xD4.A4C22xSL2(F3)C2xC4.A4D4.A4C2x2- 1+4C22xQ8C2xC4oD42- 1+4C2xD4C2xC4D4C23C2C2
# reps12142428114224

Matrix representation of C2xD4.A4 in GL7(F13)

12000000
01200000
00120000
0001000
0000100
0000010
0000001
,
12000000
01200000
00120000
00000120
00000012
0001000
0000100
,
12000000
01200000
00120000
0001000
0000100
00000120
00000012
,
1212120000
0010000
0100000
0009300
0003400
0000093
0000034
,
0100000
1000000
1212120000
0000100
00012000
0000001
00000120
,
1000000
1212120000
0100000
0001000
0009300
0000010
0000093

G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,12,0,0,0,0,0,0,0,12,0,0],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,0,9,3,0,0,0,0,0,3,4,0,0,0,0,0,0,0,9,3,0,0,0,0,0,3,4],[0,1,12,0,0,0,0,1,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,0],[1,12,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,3] >;

C2xD4.A4 in GAP, Magma, Sage, TeX

C_2\times D_4.A_4
% in TeX

G:=Group("C2xD4.A4");
// GroupNames label

G:=SmallGroup(192,1503);
// by ID

G=gap.SmallGroup(192,1503);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,1059,235,172,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=f^3=1,d^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=b^2*d,f*d*f^-1=b^2*d*e,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<