Copied to
clipboard

G = D8.A4order 192 = 26·3

The non-split extension by D8 of A4 acting through Inn(D8)

non-abelian, soluble

Aliases: D8.A4, 2- 1+4⋊C6, SL2(𝔽3).13D4, Q8○D8⋊C3, C8.A44C2, C8○D42C6, C8.3(C2×A4), D4.A45C2, D4.3(C2×A4), C2.11(D4×A4), Q8.5(C3×D4), C4.6(C22×A4), C4.A4.17C22, C4○D4.3(C2×C6), SmallGroup(192,1019)

Series: Derived Chief Lower central Upper central

C1C2C4○D4 — D8.A4
C1C2Q8C4○D4C4.A4D4.A4 — D8.A4
Q8C4○D4 — D8.A4
C1C2C4D8

Generators and relations for D8.A4
 G = < a,b,c,d,e | a8=b2=e3=1, c2=d2=a4, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a4c, ece-1=a4cd, ede-1=c >

Subgroups: 259 in 73 conjugacy classes, 19 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, C12, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×Q8, C4○D4, C4○D4, C24, SL2(𝔽3), C3×D4, C8○D4, C2×Q16, C4○D8, C8.C22, 2- 1+4, C3×D8, C2×SL2(𝔽3), C4.A4, Q8○D8, C8.A4, D4.A4, D8.A4
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, C3×D4, C2×A4, C22×A4, D4×A4, D8.A4

Character table of D8.A4

 class 12A2B2C2D3A3B4A4B4C4D6A6B6C6D6E6F8A8B8C12A12B24A24B24C24D
 size 114464426121244161616162212888888
ρ111111111111111111111111111    trivial
ρ2111-1111111-111-1-111-1-1-111-1-1-1-1    linear of order 2
ρ311-1-111111-1-111-1-1-1-1111111111    linear of order 2
ρ411-1111111-111111-1-1-1-1-111-1-1-1-1    linear of order 2
ρ511-1-11ζ32ζ311-1-1ζ32ζ3ζ6ζ65ζ6ζ65111ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 6
ρ611111ζ3ζ321111ζ3ζ32ζ3ζ32ζ3ζ32111ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ711111ζ32ζ31111ζ32ζ3ζ32ζ3ζ32ζ3111ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ8111-11ζ3ζ32111-1ζ3ζ32ζ65ζ6ζ3ζ32-1-1-1ζ3ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ9111-11ζ32ζ3111-1ζ32ζ3ζ6ζ65ζ32ζ3-1-1-1ζ32ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ1011-111ζ32ζ311-11ζ32ζ3ζ32ζ3ζ6ζ65-1-1-1ζ32ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ1111-111ζ3ζ3211-11ζ3ζ32ζ3ζ32ζ65ζ6-1-1-1ζ3ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ1211-1-11ζ3ζ3211-1-1ζ3ζ32ζ65ζ6ζ65ζ6111ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 6
ρ132200-222-2200220000000-2-20000    orthogonal lifted from D4
ρ142200-2-1--3-1+-3-2200-1--3-1+-300000001+-31--30000    complex lifted from C3×D4
ρ152200-2-1+-3-1--3-2200-1+-3-1--300000001--31+-30000    complex lifted from C3×D4
ρ1633-3-3-1003-11100000033-1000000    orthogonal lifted from C2×A4
ρ173333-1003-1-1-100000033-1000000    orthogonal lifted from A4
ρ1833-33-1003-11-1000000-3-31000000    orthogonal lifted from C2×A4
ρ19333-3-1003-1-11000000-3-31000000    orthogonal lifted from C2×A4
ρ204-4000-2-2000022000022-22000-22-22    symplectic faithful, Schur index 2
ρ214-4000-2-20000220000-22220002-22-2    symplectic faithful, Schur index 2
ρ224-40001--31+-30000-1+-3-1--30000-222200083ζ38ζ387ζ385ζ383ζ328ζ3287ζ3285ζ32    complex faithful
ρ234-40001--31+-30000-1+-3-1--3000022-2200087ζ385ζ383ζ38ζ387ζ3285ζ3283ζ328ζ32    complex faithful
ρ244-40001+-31--30000-1--3-1+-30000-222200083ζ328ζ3287ζ3285ζ3283ζ38ζ387ζ385ζ3    complex faithful
ρ254-40001+-31--30000-1--3-1+-3000022-2200087ζ3285ζ3283ζ328ζ3287ζ385ζ383ζ38ζ3    complex faithful
ρ266600200-6-200000000000000000    orthogonal lifted from D4×A4

Smallest permutation representation of D8.A4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 19)(20 24)(21 23)(25 27)(28 32)(29 31)
(1 9 5 13)(2 10 6 14)(3 11 7 15)(4 12 8 16)(17 29 21 25)(18 30 22 26)(19 31 23 27)(20 32 24 28)
(1 30 5 26)(2 31 6 27)(3 32 7 28)(4 25 8 29)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)
(9 30 22)(10 31 23)(11 32 24)(12 25 17)(13 26 18)(14 27 19)(15 28 20)(16 29 21)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,19)(20,24)(21,23)(25,27)(28,32)(29,31), (1,9,5,13)(2,10,6,14)(3,11,7,15)(4,12,8,16)(17,29,21,25)(18,30,22,26)(19,31,23,27)(20,32,24,28), (1,30,5,26)(2,31,6,27)(3,32,7,28)(4,25,8,29)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,30,22)(10,31,23)(11,32,24)(12,25,17)(13,26,18)(14,27,19)(15,28,20)(16,29,21)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,19)(20,24)(21,23)(25,27)(28,32)(29,31), (1,9,5,13)(2,10,6,14)(3,11,7,15)(4,12,8,16)(17,29,21,25)(18,30,22,26)(19,31,23,27)(20,32,24,28), (1,30,5,26)(2,31,6,27)(3,32,7,28)(4,25,8,29)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,30,22)(10,31,23)(11,32,24)(12,25,17)(13,26,18)(14,27,19)(15,28,20)(16,29,21) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,19),(20,24),(21,23),(25,27),(28,32),(29,31)], [(1,9,5,13),(2,10,6,14),(3,11,7,15),(4,12,8,16),(17,29,21,25),(18,30,22,26),(19,31,23,27),(20,32,24,28)], [(1,30,5,26),(2,31,6,27),(3,32,7,28),(4,25,8,29),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17)], [(9,30,22),(10,31,23),(11,32,24),(12,25,17),(13,26,18),(14,27,19),(15,28,20),(16,29,21)]])

Matrix representation of D8.A4 in GL4(𝔽7) generated by

1136
2405
5434
2035
,
6000
6663
5645
1215
,
6214
5444
6001
6204
,
6635
2160
0053
0032
,
5563
2150
0343
5122
G:=sub<GL(4,GF(7))| [1,2,5,2,1,4,4,0,3,0,3,3,6,5,4,5],[6,6,5,1,0,6,6,2,0,6,4,1,0,3,5,5],[6,5,6,6,2,4,0,2,1,4,0,0,4,4,1,4],[6,2,0,0,6,1,0,0,3,6,5,3,5,0,3,2],[5,2,0,5,5,1,3,1,6,5,4,2,3,0,3,2] >;

D8.A4 in GAP, Magma, Sage, TeX

D_8.A_4
% in TeX

G:=Group("D8.A4");
// GroupNames label

G:=SmallGroup(192,1019);
// by ID

G=gap.SmallGroup(192,1019);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,197,3027,1522,248,438,172,775,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=e^3=1,c^2=d^2=a^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^4*c,e*c*e^-1=a^4*c*d,e*d*e^-1=c>;
// generators/relations

Export

Character table of D8.A4 in TeX

׿
×
𝔽