Extensions 1→N→G→Q→1 with N=C3×Q32 and Q=C2

Direct product G=N×Q with N=C3×Q32 and Q=C2
dρLabelID
C6×Q32192C6xQ32192,940

Semidirect products G=N:Q with N=C3×Q32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Q32)⋊1C2 = C3⋊SD64φ: C2/C1C2 ⊆ Out C3×Q32964+(C3xQ32):1C2192,80
(C3×Q32)⋊2C2 = S3×Q32φ: C2/C1C2 ⊆ Out C3×Q32964-(C3xQ32):2C2192,476
(C3×Q32)⋊3C2 = D485C2φ: C2/C1C2 ⊆ Out C3×Q32964+(C3xQ32):3C2192,478
(C3×Q32)⋊4C2 = Q32⋊S3φ: C2/C1C2 ⊆ Out C3×Q32964(C3xQ32):4C2192,477
(C3×Q32)⋊5C2 = C3×SD64φ: C2/C1C2 ⊆ Out C3×Q32962(C3xQ32):5C2192,178
(C3×Q32)⋊6C2 = C3×Q32⋊C2φ: C2/C1C2 ⊆ Out C3×Q32964(C3xQ32):6C2192,943
(C3×Q32)⋊7C2 = C3×C4○D16φ: trivial image962(C3xQ32):7C2192,941

Non-split extensions G=N.Q with N=C3×Q32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Q32).1C2 = C3⋊Q64φ: C2/C1C2 ⊆ Out C3×Q321924-(C3xQ32).1C2192,81
(C3×Q32).2C2 = C3×Q64φ: C2/C1C2 ⊆ Out C3×Q321922(C3xQ32).2C2192,179

׿
×
𝔽