Copied to
clipboard

G = C3⋊Q64order 192 = 26·3

The semidirect product of C3 and Q64 acting via Q64/Q32=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C32Q64, Q32.S3, C16.7D6, C12.8D8, C6.11D16, C24.12D4, C48.5C22, Dic24.2C2, C3⋊C32.C2, C4.4(D4⋊S3), (C3×Q32).1C2, C2.7(C3⋊D16), C8.12(C3⋊D4), SmallGroup(192,81)

Series: Derived Chief Lower central Upper central

C1C48 — C3⋊Q64
C1C3C6C12C24C48Dic24 — C3⋊Q64
C3C6C12C24C48 — C3⋊Q64
C1C2C4C8C16Q32

Generators and relations for C3⋊Q64
 G = < a,b,c | a3=b32=1, c2=b16, bab-1=a-1, ac=ca, cbc-1=b-1 >

8C4
24C4
4Q8
12Q8
8Dic3
8C12
2Q16
6Q16
4Dic6
4C3×Q8
3C32
3Q32
2Dic12
2C3×Q16
3Q64

Character table of C3⋊Q64

 class 1234A4B4C68A8B12A12B12C16A16B16C16D24A24B32A32B32C32D32E32F32G32H48A48B48C48D
 size 1122164822241616222244666666664444
ρ1111111111111111111111111111111    trivial
ρ211111-1111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ31111-111111-1-1111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ41111-1-11111-1-1111111111111111111    linear of order 2
ρ522-1220-122-1-1-12222-1-100000000-1-1-1-1    orthogonal lifted from S3
ρ622-12-20-122-1112222-1-100000000-1-1-1-1    orthogonal lifted from D6
ρ7222200222200-2-2-2-22200000000-2-2-2-2    orthogonal lifted from D4
ρ8222-200200-2002-2-220016716165163ζ165163ζ165163ζ16716ζ1671616716165163-22-22    orthogonal lifted from D16
ρ9222-200200-200-222-200ζ16516316716ζ16716ζ16716165163165163ζ165163167162-22-2    orthogonal lifted from D16
ρ102222002-2-22000000-2-2-2222-2-2-220000    orthogonal lifted from D8
ρ112222002-2-22000000-2-22-2-2-2222-20000    orthogonal lifted from D8
ρ12222-200200-200-222-200165163ζ167161671616716ζ165163ζ165163165163ζ167162-22-2    orthogonal lifted from D16
ρ13222-200200-2002-2-2200ζ16716ζ1651631651631651631671616716ζ16716ζ165163-22-22    orthogonal lifted from D16
ρ142-22000-22-20003214322ζ32103263210326ζ32143222-2ζ32932732273221ζ3213323321332332313217ζ32313217329327ζ32273221ζ3210326ζ321432232103263214322    symplectic lifted from Q64, Schur index 2
ρ152-22000-22-2000ζ32143223210326ζ321032632143222-232313217321332332273221ζ32273221329327ζ329327ζ32313217ζ321332332103263214322ζ3210326ζ3214322    symplectic lifted from Q64, Schur index 2
ρ162-22000-22-2000ζ32143223210326ζ321032632143222-2ζ32313217ζ3213323ζ3227322132273221ζ32932732932732313217321332332103263214322ζ3210326ζ3214322    symplectic lifted from Q64, Schur index 2
ρ172-22000-22-20003214322ζ32103263210326ζ32143222-2329327ζ322732213213323ζ3213323ζ3231321732313217ζ32932732273221ζ3210326ζ321432232103263214322    symplectic lifted from Q64, Schur index 2
ρ182-22000-2-22000ζ3210326ζ321432232143223210326-22ζ3213323ζ329327ζ323132173231321732273221ζ322732213213323329327ζ321432232103263214322ζ3210326    symplectic lifted from Q64, Schur index 2
ρ192-22000-2-2200032103263214322ζ3214322ζ3210326-223227322132313217ζ3293273293273213323ζ3213323ζ32273221ζ323132173214322ζ3210326ζ32143223210326    symplectic lifted from Q64, Schur index 2
ρ202-22000-2-2200032103263214322ζ3214322ζ3210326-22ζ32273221ζ32313217329327ζ329327ζ3213323321332332273221323132173214322ζ3210326ζ32143223210326    symplectic lifted from Q64, Schur index 2
ρ212-22000-2-22000ζ3210326ζ321432232143223210326-22321332332932732313217ζ32313217ζ3227322132273221ζ3213323ζ329327ζ321432232103263214322ζ3210326    symplectic lifted from Q64, Schur index 2
ρ2222-1200-122-1--3-3-2-2-2-2-1-1000000001111    complex lifted from C3⋊D4
ρ2322-1200-122-1-3--3-2-2-2-2-1-1000000001111    complex lifted from C3⋊D4
ρ2444-2400-2-4-4-200000022000000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ2544-2-400-20020022-22-222200000000002-22-2    orthogonal lifted from C3⋊D16, Schur index 2
ρ2644-2-400-200200-222222-220000000000-22-22    orthogonal lifted from C3⋊D16, Schur index 2
ρ274-4-20002-2222000165-2ζ163-2ζ1615+2ζ1691615-2ζ169-2ζ165+2ζ1632-20000000016716ζ165163ζ16716165163    symplectic faithful, Schur index 2
ρ284-4-2000222-22000-2ζ1615+2ζ169-2ζ165+2ζ163165-2ζ1631615-2ζ169-2200000000ζ165163ζ1671616516316716    symplectic faithful, Schur index 2
ρ294-4-20002-2222000-2ζ165+2ζ1631615-2ζ169-2ζ1615+2ζ169165-2ζ1632-200000000ζ1671616516316716ζ165163    symplectic faithful, Schur index 2
ρ304-4-2000222-220001615-2ζ169165-2ζ163-2ζ165+2ζ163-2ζ1615+2ζ169-220000000016516316716ζ165163ζ16716    symplectic faithful, Schur index 2

Smallest permutation representation of C3⋊Q64
Regular action on 192 points
Generators in S192
(1 184 39)(2 40 185)(3 186 41)(4 42 187)(5 188 43)(6 44 189)(7 190 45)(8 46 191)(9 192 47)(10 48 161)(11 162 49)(12 50 163)(13 164 51)(14 52 165)(15 166 53)(16 54 167)(17 168 55)(18 56 169)(19 170 57)(20 58 171)(21 172 59)(22 60 173)(23 174 61)(24 62 175)(25 176 63)(26 64 177)(27 178 33)(28 34 179)(29 180 35)(30 36 181)(31 182 37)(32 38 183)(65 155 98)(66 99 156)(67 157 100)(68 101 158)(69 159 102)(70 103 160)(71 129 104)(72 105 130)(73 131 106)(74 107 132)(75 133 108)(76 109 134)(77 135 110)(78 111 136)(79 137 112)(80 113 138)(81 139 114)(82 115 140)(83 141 116)(84 117 142)(85 143 118)(86 119 144)(87 145 120)(88 121 146)(89 147 122)(90 123 148)(91 149 124)(92 125 150)(93 151 126)(94 127 152)(95 153 128)(96 97 154)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 86 17 70)(2 85 18 69)(3 84 19 68)(4 83 20 67)(5 82 21 66)(6 81 22 65)(7 80 23 96)(8 79 24 95)(9 78 25 94)(10 77 26 93)(11 76 27 92)(12 75 28 91)(13 74 29 90)(14 73 30 89)(15 72 31 88)(16 71 32 87)(33 150 49 134)(34 149 50 133)(35 148 51 132)(36 147 52 131)(37 146 53 130)(38 145 54 129)(39 144 55 160)(40 143 56 159)(41 142 57 158)(42 141 58 157)(43 140 59 156)(44 139 60 155)(45 138 61 154)(46 137 62 153)(47 136 63 152)(48 135 64 151)(97 190 113 174)(98 189 114 173)(99 188 115 172)(100 187 116 171)(101 186 117 170)(102 185 118 169)(103 184 119 168)(104 183 120 167)(105 182 121 166)(106 181 122 165)(107 180 123 164)(108 179 124 163)(109 178 125 162)(110 177 126 161)(111 176 127 192)(112 175 128 191)

G:=sub<Sym(192)| (1,184,39)(2,40,185)(3,186,41)(4,42,187)(5,188,43)(6,44,189)(7,190,45)(8,46,191)(9,192,47)(10,48,161)(11,162,49)(12,50,163)(13,164,51)(14,52,165)(15,166,53)(16,54,167)(17,168,55)(18,56,169)(19,170,57)(20,58,171)(21,172,59)(22,60,173)(23,174,61)(24,62,175)(25,176,63)(26,64,177)(27,178,33)(28,34,179)(29,180,35)(30,36,181)(31,182,37)(32,38,183)(65,155,98)(66,99,156)(67,157,100)(68,101,158)(69,159,102)(70,103,160)(71,129,104)(72,105,130)(73,131,106)(74,107,132)(75,133,108)(76,109,134)(77,135,110)(78,111,136)(79,137,112)(80,113,138)(81,139,114)(82,115,140)(83,141,116)(84,117,142)(85,143,118)(86,119,144)(87,145,120)(88,121,146)(89,147,122)(90,123,148)(91,149,124)(92,125,150)(93,151,126)(94,127,152)(95,153,128)(96,97,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,86,17,70)(2,85,18,69)(3,84,19,68)(4,83,20,67)(5,82,21,66)(6,81,22,65)(7,80,23,96)(8,79,24,95)(9,78,25,94)(10,77,26,93)(11,76,27,92)(12,75,28,91)(13,74,29,90)(14,73,30,89)(15,72,31,88)(16,71,32,87)(33,150,49,134)(34,149,50,133)(35,148,51,132)(36,147,52,131)(37,146,53,130)(38,145,54,129)(39,144,55,160)(40,143,56,159)(41,142,57,158)(42,141,58,157)(43,140,59,156)(44,139,60,155)(45,138,61,154)(46,137,62,153)(47,136,63,152)(48,135,64,151)(97,190,113,174)(98,189,114,173)(99,188,115,172)(100,187,116,171)(101,186,117,170)(102,185,118,169)(103,184,119,168)(104,183,120,167)(105,182,121,166)(106,181,122,165)(107,180,123,164)(108,179,124,163)(109,178,125,162)(110,177,126,161)(111,176,127,192)(112,175,128,191)>;

G:=Group( (1,184,39)(2,40,185)(3,186,41)(4,42,187)(5,188,43)(6,44,189)(7,190,45)(8,46,191)(9,192,47)(10,48,161)(11,162,49)(12,50,163)(13,164,51)(14,52,165)(15,166,53)(16,54,167)(17,168,55)(18,56,169)(19,170,57)(20,58,171)(21,172,59)(22,60,173)(23,174,61)(24,62,175)(25,176,63)(26,64,177)(27,178,33)(28,34,179)(29,180,35)(30,36,181)(31,182,37)(32,38,183)(65,155,98)(66,99,156)(67,157,100)(68,101,158)(69,159,102)(70,103,160)(71,129,104)(72,105,130)(73,131,106)(74,107,132)(75,133,108)(76,109,134)(77,135,110)(78,111,136)(79,137,112)(80,113,138)(81,139,114)(82,115,140)(83,141,116)(84,117,142)(85,143,118)(86,119,144)(87,145,120)(88,121,146)(89,147,122)(90,123,148)(91,149,124)(92,125,150)(93,151,126)(94,127,152)(95,153,128)(96,97,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,86,17,70)(2,85,18,69)(3,84,19,68)(4,83,20,67)(5,82,21,66)(6,81,22,65)(7,80,23,96)(8,79,24,95)(9,78,25,94)(10,77,26,93)(11,76,27,92)(12,75,28,91)(13,74,29,90)(14,73,30,89)(15,72,31,88)(16,71,32,87)(33,150,49,134)(34,149,50,133)(35,148,51,132)(36,147,52,131)(37,146,53,130)(38,145,54,129)(39,144,55,160)(40,143,56,159)(41,142,57,158)(42,141,58,157)(43,140,59,156)(44,139,60,155)(45,138,61,154)(46,137,62,153)(47,136,63,152)(48,135,64,151)(97,190,113,174)(98,189,114,173)(99,188,115,172)(100,187,116,171)(101,186,117,170)(102,185,118,169)(103,184,119,168)(104,183,120,167)(105,182,121,166)(106,181,122,165)(107,180,123,164)(108,179,124,163)(109,178,125,162)(110,177,126,161)(111,176,127,192)(112,175,128,191) );

G=PermutationGroup([[(1,184,39),(2,40,185),(3,186,41),(4,42,187),(5,188,43),(6,44,189),(7,190,45),(8,46,191),(9,192,47),(10,48,161),(11,162,49),(12,50,163),(13,164,51),(14,52,165),(15,166,53),(16,54,167),(17,168,55),(18,56,169),(19,170,57),(20,58,171),(21,172,59),(22,60,173),(23,174,61),(24,62,175),(25,176,63),(26,64,177),(27,178,33),(28,34,179),(29,180,35),(30,36,181),(31,182,37),(32,38,183),(65,155,98),(66,99,156),(67,157,100),(68,101,158),(69,159,102),(70,103,160),(71,129,104),(72,105,130),(73,131,106),(74,107,132),(75,133,108),(76,109,134),(77,135,110),(78,111,136),(79,137,112),(80,113,138),(81,139,114),(82,115,140),(83,141,116),(84,117,142),(85,143,118),(86,119,144),(87,145,120),(88,121,146),(89,147,122),(90,123,148),(91,149,124),(92,125,150),(93,151,126),(94,127,152),(95,153,128),(96,97,154)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,86,17,70),(2,85,18,69),(3,84,19,68),(4,83,20,67),(5,82,21,66),(6,81,22,65),(7,80,23,96),(8,79,24,95),(9,78,25,94),(10,77,26,93),(11,76,27,92),(12,75,28,91),(13,74,29,90),(14,73,30,89),(15,72,31,88),(16,71,32,87),(33,150,49,134),(34,149,50,133),(35,148,51,132),(36,147,52,131),(37,146,53,130),(38,145,54,129),(39,144,55,160),(40,143,56,159),(41,142,57,158),(42,141,58,157),(43,140,59,156),(44,139,60,155),(45,138,61,154),(46,137,62,153),(47,136,63,152),(48,135,64,151),(97,190,113,174),(98,189,114,173),(99,188,115,172),(100,187,116,171),(101,186,117,170),(102,185,118,169),(103,184,119,168),(104,183,120,167),(105,182,121,166),(106,181,122,165),(107,180,123,164),(108,179,124,163),(109,178,125,162),(110,177,126,161),(111,176,127,192),(112,175,128,191)]])

Matrix representation of C3⋊Q64 in GL4(𝔽97) generated by

1000
0100
0001
009696
,
275700
402700
004780
003350
,
138600
868400
005615
008241
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,0,96,0,0,1,96],[27,40,0,0,57,27,0,0,0,0,47,33,0,0,80,50],[13,86,0,0,86,84,0,0,0,0,56,82,0,0,15,41] >;

C3⋊Q64 in GAP, Magma, Sage, TeX

C_3\rtimes Q_{64}
% in TeX

G:=Group("C3:Q64");
// GroupNames label

G:=SmallGroup(192,81);
// by ID

G=gap.SmallGroup(192,81);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,85,232,254,135,142,675,346,192,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^3=b^32=1,c^2=b^16,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊Q64 in TeX
Character table of C3⋊Q64 in TeX

׿
×
𝔽