metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3⋊3SD64, Q32⋊1S3, C12.7D8, C16.6D6, D48.2C2, C24.11D4, C6.10D16, C48.4C22, C3⋊C32⋊3C2, (C3×Q32)⋊1C2, C4.3(D4⋊S3), C8.11(C3⋊D4), C2.6(C3⋊D16), SmallGroup(192,80)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊SD64
G = < a,b,c | a3=b32=c2=1, bab-1=cac=a-1, cbc=b15 >
Character table of C3⋊SD64
class | 1 | 2A | 2B | 3 | 4A | 4B | 6 | 8A | 8B | 12A | 12B | 12C | 16A | 16B | 16C | 16D | 24A | 24B | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | 48A | 48B | 48C | 48D | |
size | 1 | 1 | 48 | 2 | 2 | 16 | 2 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -1 | 2 | -2 | -1 | 2 | 2 | -1 | 1 | 1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D16 |
ρ9 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D16 |
ρ10 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D16 |
ρ13 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D16 |
ρ14 | 2 | 2 | 0 | -1 | 2 | 0 | -1 | 2 | 2 | -1 | -√-3 | √-3 | -2 | -2 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | -1 | 2 | 0 | -1 | 2 | 2 | -1 | √-3 | -√-3 | -2 | -2 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | -√2 | √2 | 0 | 0 | 0 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | -√2 | √2 | ζ329+ζ327 | ζ3227+ζ3221 | ζ3213+ζ323 | ζ3229+ζ3219 | ζ3231+ζ3217 | ζ3215+ζ32 | ζ3225+ζ3223 | ζ3211+ζ325 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | complex lifted from SD64 |
ρ17 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | -√2 | √2 | 0 | 0 | 0 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | -√2 | √2 | ζ3215+ζ32 | ζ3213+ζ323 | ζ3211+ζ325 | ζ3227+ζ3221 | ζ329+ζ327 | ζ3225+ζ3223 | ζ3231+ζ3217 | ζ3229+ζ3219 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | complex lifted from SD64 |
ρ18 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | -√2 | √2 | 0 | 0 | 0 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | -√2 | √2 | ζ3231+ζ3217 | ζ3229+ζ3219 | ζ3227+ζ3221 | ζ3211+ζ325 | ζ3225+ζ3223 | ζ329+ζ327 | ζ3215+ζ32 | ζ3213+ζ323 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | complex lifted from SD64 |
ρ19 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | √2 | -√2 | 0 | 0 | 0 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | √2 | -√2 | ζ3211+ζ325 | ζ3215+ζ32 | ζ3225+ζ3223 | ζ329+ζ327 | ζ3213+ζ323 | ζ3229+ζ3219 | ζ3227+ζ3221 | ζ3231+ζ3217 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | complex lifted from SD64 |
ρ20 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | √2 | -√2 | 0 | 0 | 0 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | √2 | -√2 | ζ3213+ζ323 | ζ329+ζ327 | ζ3215+ζ32 | ζ3231+ζ3217 | ζ3227+ζ3221 | ζ3211+ζ325 | ζ3229+ζ3219 | ζ3225+ζ3223 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | complex lifted from SD64 |
ρ21 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | -√2 | √2 | 0 | 0 | 0 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | -√2 | √2 | ζ3225+ζ3223 | ζ3211+ζ325 | ζ3229+ζ3219 | ζ3213+ζ323 | ζ3215+ζ32 | ζ3231+ζ3217 | ζ329+ζ327 | ζ3227+ζ3221 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | complex lifted from SD64 |
ρ22 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | √2 | -√2 | 0 | 0 | 0 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | √2 | -√2 | ζ3229+ζ3219 | ζ3225+ζ3223 | ζ3231+ζ3217 | ζ3215+ζ32 | ζ3211+ζ325 | ζ3227+ζ3221 | ζ3213+ζ323 | ζ329+ζ327 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3210+ζ326 | complex lifted from SD64 |
ρ23 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | √2 | -√2 | 0 | 0 | 0 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | ζ3214-ζ322 | √2 | -√2 | ζ3227+ζ3221 | ζ3231+ζ3217 | ζ329+ζ327 | ζ3225+ζ3223 | ζ3229+ζ3219 | ζ3213+ζ323 | ζ3211+ζ325 | ζ3215+ζ32 | ζ3214-ζ322 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3210-ζ326 | complex lifted from SD64 |
ρ24 | 4 | 4 | 0 | -2 | 4 | 0 | -2 | -4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ25 | 4 | 4 | 0 | -2 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from C3⋊D16, Schur index 2 |
ρ26 | 4 | 4 | 0 | -2 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from C3⋊D16, Schur index 2 |
ρ27 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 2√2 | -2√2 | 0 | 0 | 0 | -2ζ165+2ζ163 | 2ζ1615-2ζ169 | 2ζ165-2ζ163 | -2ζ1615+2ζ169 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | orthogonal faithful, Schur index 2 |
ρ28 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | -2√2 | 2√2 | 0 | 0 | 0 | -2ζ1615+2ζ169 | -2ζ165+2ζ163 | 2ζ1615-2ζ169 | 2ζ165-2ζ163 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | orthogonal faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 2√2 | -2√2 | 0 | 0 | 0 | 2ζ165-2ζ163 | -2ζ1615+2ζ169 | -2ζ165+2ζ163 | 2ζ1615-2ζ169 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | orthogonal faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | -2√2 | 2√2 | 0 | 0 | 0 | 2ζ1615-2ζ169 | 2ζ165-2ζ163 | -2ζ1615+2ζ169 | -2ζ165+2ζ163 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | orthogonal faithful, Schur index 2 |
(1 75 35)(2 36 76)(3 77 37)(4 38 78)(5 79 39)(6 40 80)(7 81 41)(8 42 82)(9 83 43)(10 44 84)(11 85 45)(12 46 86)(13 87 47)(14 48 88)(15 89 49)(16 50 90)(17 91 51)(18 52 92)(19 93 53)(20 54 94)(21 95 55)(22 56 96)(23 65 57)(24 58 66)(25 67 59)(26 60 68)(27 69 61)(28 62 70)(29 71 63)(30 64 72)(31 73 33)(32 34 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 16)(3 31)(4 14)(5 29)(6 12)(7 27)(8 10)(9 25)(11 23)(13 21)(15 19)(18 32)(20 30)(22 28)(24 26)(33 77)(34 92)(35 75)(36 90)(37 73)(38 88)(39 71)(40 86)(41 69)(42 84)(43 67)(44 82)(45 65)(46 80)(47 95)(48 78)(49 93)(50 76)(51 91)(52 74)(53 89)(54 72)(55 87)(56 70)(57 85)(58 68)(59 83)(60 66)(61 81)(62 96)(63 79)(64 94)
G:=sub<Sym(96)| (1,75,35)(2,36,76)(3,77,37)(4,38,78)(5,79,39)(6,40,80)(7,81,41)(8,42,82)(9,83,43)(10,44,84)(11,85,45)(12,46,86)(13,87,47)(14,48,88)(15,89,49)(16,50,90)(17,91,51)(18,52,92)(19,93,53)(20,54,94)(21,95,55)(22,56,96)(23,65,57)(24,58,66)(25,67,59)(26,60,68)(27,69,61)(28,62,70)(29,71,63)(30,64,72)(31,73,33)(32,34,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)(33,77)(34,92)(35,75)(36,90)(37,73)(38,88)(39,71)(40,86)(41,69)(42,84)(43,67)(44,82)(45,65)(46,80)(47,95)(48,78)(49,93)(50,76)(51,91)(52,74)(53,89)(54,72)(55,87)(56,70)(57,85)(58,68)(59,83)(60,66)(61,81)(62,96)(63,79)(64,94)>;
G:=Group( (1,75,35)(2,36,76)(3,77,37)(4,38,78)(5,79,39)(6,40,80)(7,81,41)(8,42,82)(9,83,43)(10,44,84)(11,85,45)(12,46,86)(13,87,47)(14,48,88)(15,89,49)(16,50,90)(17,91,51)(18,52,92)(19,93,53)(20,54,94)(21,95,55)(22,56,96)(23,65,57)(24,58,66)(25,67,59)(26,60,68)(27,69,61)(28,62,70)(29,71,63)(30,64,72)(31,73,33)(32,34,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)(33,77)(34,92)(35,75)(36,90)(37,73)(38,88)(39,71)(40,86)(41,69)(42,84)(43,67)(44,82)(45,65)(46,80)(47,95)(48,78)(49,93)(50,76)(51,91)(52,74)(53,89)(54,72)(55,87)(56,70)(57,85)(58,68)(59,83)(60,66)(61,81)(62,96)(63,79)(64,94) );
G=PermutationGroup([[(1,75,35),(2,36,76),(3,77,37),(4,38,78),(5,79,39),(6,40,80),(7,81,41),(8,42,82),(9,83,43),(10,44,84),(11,85,45),(12,46,86),(13,87,47),(14,48,88),(15,89,49),(16,50,90),(17,91,51),(18,52,92),(19,93,53),(20,54,94),(21,95,55),(22,56,96),(23,65,57),(24,58,66),(25,67,59),(26,60,68),(27,69,61),(28,62,70),(29,71,63),(30,64,72),(31,73,33),(32,34,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,16),(3,31),(4,14),(5,29),(6,12),(7,27),(8,10),(9,25),(11,23),(13,21),(15,19),(18,32),(20,30),(22,28),(24,26),(33,77),(34,92),(35,75),(36,90),(37,73),(38,88),(39,71),(40,86),(41,69),(42,84),(43,67),(44,82),(45,65),(46,80),(47,95),(48,78),(49,93),(50,76),(51,91),(52,74),(53,89),(54,72),(55,87),(56,70),(57,85),(58,68),(59,83),(60,66),(61,81),(62,96),(63,79),(64,94)]])
Matrix representation of C3⋊SD64 ►in GL4(𝔽97) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 96 | 1 |
0 | 0 | 96 | 0 |
92 | 89 | 0 | 0 |
36 | 19 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 33 | 0 | 0 |
0 | 96 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,96,96,0,0,1,0],[92,36,0,0,89,19,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,33,96,0,0,0,0,0,1,0,0,1,0] >;
C3⋊SD64 in GAP, Magma, Sage, TeX
C_3\rtimes {\rm SD}_{64}
% in TeX
G:=Group("C3:SD64");
// GroupNames label
G:=SmallGroup(192,80);
// by ID
G=gap.SmallGroup(192,80);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,232,254,135,142,675,346,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^3=b^32=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^15>;
// generators/relations
Export
Subgroup lattice of C3⋊SD64 in TeX
Character table of C3⋊SD64 in TeX