Copied to
clipboard

G = C3⋊SD64order 192 = 26·3

The semidirect product of C3 and SD64 acting via SD64/Q32=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C33SD64, Q321S3, C12.7D8, C16.6D6, D48.2C2, C24.11D4, C6.10D16, C48.4C22, C3⋊C323C2, (C3×Q32)⋊1C2, C4.3(D4⋊S3), C8.11(C3⋊D4), C2.6(C3⋊D16), SmallGroup(192,80)

Series: Derived Chief Lower central Upper central

C1C48 — C3⋊SD64
C1C3C6C12C24C48D48 — C3⋊SD64
C3C6C12C24C48 — C3⋊SD64
C1C2C4C8C16Q32

Generators and relations for C3⋊SD64
 G = < a,b,c | a3=b32=c2=1, bab-1=cac=a-1, cbc=b15 >

48C2
8C4
24C22
16S3
4Q8
12D4
8D6
8C12
2Q16
6D8
4D12
4C3×Q8
3C32
3D16
2D24
2C3×Q16
3SD64

Character table of C3⋊SD64

 class 12A2B34A4B68A8B12A12B12C16A16B16C16D24A24B32A32B32C32D32E32F32G32H48A48B48C48D
 size 1148221622241616222244666666664444
ρ1111111111111111111111111111111    trivial
ρ211111-11111-1-1111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ311-1111111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ411-111-11111-1-1111111111111111111    linear of order 2
ρ5220-12-2-122-1112222-1-100000000-1-1-1-1    orthogonal lifted from D6
ρ6220-122-122-1-1-12222-1-100000000-1-1-1-1    orthogonal lifted from S3
ρ7220220222200-2-2-2-22200000000-2-2-2-2    orthogonal lifted from D4
ρ82202-20200-2002-22-20016716165163ζ165163ζ165163ζ16716ζ1671616716165163-22-22    orthogonal lifted from D16
ρ92202-20200-200-22-2200ζ16516316716ζ16716ζ16716165163165163ζ165163167162-22-2    orthogonal lifted from D16
ρ102202202-2-22000000-2-2-2222-2-2-220000    orthogonal lifted from D8
ρ112202202-2-22000000-2-22-2-2-2222-20000    orthogonal lifted from D8
ρ122202-20200-200-22-2200165163ζ167161671616716ζ165163ζ165163165163ζ167162-22-2    orthogonal lifted from D16
ρ132202-20200-2002-22-200ζ16716ζ1651631651631651631671616716ζ16716ζ165163-22-22    orthogonal lifted from D16
ρ14220-120-122-1--3-3-2-2-2-2-1-1000000001111    complex lifted from C3⋊D4
ρ15220-120-122-1-3--3-2-2-2-2-1-1000000001111    complex lifted from C3⋊D4
ρ162-20200-2-220003214322ζ3210326ζ32143223210326-22ζ329327ζ32273221ζ3213323ζ32293219ζ32313217ζ321532ζ32253223ζ321132532103263214322ζ3210326ζ3214322    complex lifted from SD64
ρ172-20200-2-22000ζ321432232103263214322ζ3210326-22ζ321532ζ3213323ζ3211325ζ32273221ζ329327ζ32253223ζ32313217ζ32293219ζ3210326ζ321432232103263214322    complex lifted from SD64
ρ182-20200-2-22000ζ321432232103263214322ζ3210326-22ζ32313217ζ32293219ζ32273221ζ3211325ζ32253223ζ329327ζ321532ζ3213323ζ3210326ζ321432232103263214322    complex lifted from SD64
ρ192-20200-22-200032103263214322ζ3210326ζ32143222-2ζ3211325ζ321532ζ32253223ζ329327ζ3213323ζ32293219ζ32273221ζ32313217ζ321432232103263214322ζ3210326    complex lifted from SD64
ρ202-20200-22-2000ζ3210326ζ3214322321032632143222-2ζ3213323ζ329327ζ321532ζ32313217ζ32273221ζ3211325ζ32293219ζ322532233214322ζ3210326ζ32143223210326    complex lifted from SD64
ρ212-20200-2-220003214322ζ3210326ζ32143223210326-22ζ32253223ζ3211325ζ32293219ζ3213323ζ321532ζ32313217ζ329327ζ3227322132103263214322ζ3210326ζ3214322    complex lifted from SD64
ρ222-20200-22-2000ζ3210326ζ3214322321032632143222-2ζ32293219ζ32253223ζ32313217ζ321532ζ3211325ζ32273221ζ3213323ζ3293273214322ζ3210326ζ32143223210326    complex lifted from SD64
ρ232-20200-22-200032103263214322ζ3210326ζ32143222-2ζ32273221ζ32313217ζ329327ζ32253223ζ32293219ζ3213323ζ3211325ζ321532ζ321432232103263214322ζ3210326    complex lifted from SD64
ρ24440-240-2-4-4-200000022000000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ25440-2-40-20020022-2222-2200000000002-22-2    orthogonal lifted from C3⋊D16, Schur index 2
ρ26440-2-40-200200-2222-22220000000000-22-22    orthogonal lifted from C3⋊D16, Schur index 2
ρ274-40-200222-22000-2ζ165+2ζ1631615-2ζ169165-2ζ163-2ζ1615+2ζ169-220000000016716ζ165163ζ16716165163    orthogonal faithful, Schur index 2
ρ284-40-2002-2222000-2ζ1615+2ζ169-2ζ165+2ζ1631615-2ζ169165-2ζ1632-20000000016516316716ζ165163ζ16716    orthogonal faithful, Schur index 2
ρ294-40-200222-22000165-2ζ163-2ζ1615+2ζ169-2ζ165+2ζ1631615-2ζ169-2200000000ζ1671616516316716ζ165163    orthogonal faithful, Schur index 2
ρ304-40-2002-22220001615-2ζ169165-2ζ163-2ζ1615+2ζ169-2ζ165+2ζ1632-200000000ζ165163ζ1671616516316716    orthogonal faithful, Schur index 2

Smallest permutation representation of C3⋊SD64
On 96 points
Generators in S96
(1 75 35)(2 36 76)(3 77 37)(4 38 78)(5 79 39)(6 40 80)(7 81 41)(8 42 82)(9 83 43)(10 44 84)(11 85 45)(12 46 86)(13 87 47)(14 48 88)(15 89 49)(16 50 90)(17 91 51)(18 52 92)(19 93 53)(20 54 94)(21 95 55)(22 56 96)(23 65 57)(24 58 66)(25 67 59)(26 60 68)(27 69 61)(28 62 70)(29 71 63)(30 64 72)(31 73 33)(32 34 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 16)(3 31)(4 14)(5 29)(6 12)(7 27)(8 10)(9 25)(11 23)(13 21)(15 19)(18 32)(20 30)(22 28)(24 26)(33 77)(34 92)(35 75)(36 90)(37 73)(38 88)(39 71)(40 86)(41 69)(42 84)(43 67)(44 82)(45 65)(46 80)(47 95)(48 78)(49 93)(50 76)(51 91)(52 74)(53 89)(54 72)(55 87)(56 70)(57 85)(58 68)(59 83)(60 66)(61 81)(62 96)(63 79)(64 94)

G:=sub<Sym(96)| (1,75,35)(2,36,76)(3,77,37)(4,38,78)(5,79,39)(6,40,80)(7,81,41)(8,42,82)(9,83,43)(10,44,84)(11,85,45)(12,46,86)(13,87,47)(14,48,88)(15,89,49)(16,50,90)(17,91,51)(18,52,92)(19,93,53)(20,54,94)(21,95,55)(22,56,96)(23,65,57)(24,58,66)(25,67,59)(26,60,68)(27,69,61)(28,62,70)(29,71,63)(30,64,72)(31,73,33)(32,34,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)(33,77)(34,92)(35,75)(36,90)(37,73)(38,88)(39,71)(40,86)(41,69)(42,84)(43,67)(44,82)(45,65)(46,80)(47,95)(48,78)(49,93)(50,76)(51,91)(52,74)(53,89)(54,72)(55,87)(56,70)(57,85)(58,68)(59,83)(60,66)(61,81)(62,96)(63,79)(64,94)>;

G:=Group( (1,75,35)(2,36,76)(3,77,37)(4,38,78)(5,79,39)(6,40,80)(7,81,41)(8,42,82)(9,83,43)(10,44,84)(11,85,45)(12,46,86)(13,87,47)(14,48,88)(15,89,49)(16,50,90)(17,91,51)(18,52,92)(19,93,53)(20,54,94)(21,95,55)(22,56,96)(23,65,57)(24,58,66)(25,67,59)(26,60,68)(27,69,61)(28,62,70)(29,71,63)(30,64,72)(31,73,33)(32,34,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)(33,77)(34,92)(35,75)(36,90)(37,73)(38,88)(39,71)(40,86)(41,69)(42,84)(43,67)(44,82)(45,65)(46,80)(47,95)(48,78)(49,93)(50,76)(51,91)(52,74)(53,89)(54,72)(55,87)(56,70)(57,85)(58,68)(59,83)(60,66)(61,81)(62,96)(63,79)(64,94) );

G=PermutationGroup([[(1,75,35),(2,36,76),(3,77,37),(4,38,78),(5,79,39),(6,40,80),(7,81,41),(8,42,82),(9,83,43),(10,44,84),(11,85,45),(12,46,86),(13,87,47),(14,48,88),(15,89,49),(16,50,90),(17,91,51),(18,52,92),(19,93,53),(20,54,94),(21,95,55),(22,56,96),(23,65,57),(24,58,66),(25,67,59),(26,60,68),(27,69,61),(28,62,70),(29,71,63),(30,64,72),(31,73,33),(32,34,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,16),(3,31),(4,14),(5,29),(6,12),(7,27),(8,10),(9,25),(11,23),(13,21),(15,19),(18,32),(20,30),(22,28),(24,26),(33,77),(34,92),(35,75),(36,90),(37,73),(38,88),(39,71),(40,86),(41,69),(42,84),(43,67),(44,82),(45,65),(46,80),(47,95),(48,78),(49,93),(50,76),(51,91),(52,74),(53,89),(54,72),(55,87),(56,70),(57,85),(58,68),(59,83),(60,66),(61,81),(62,96),(63,79),(64,94)]])

Matrix representation of C3⋊SD64 in GL4(𝔽97) generated by

1000
0100
00961
00960
,
928900
361900
0001
0010
,
13300
09600
0001
0010
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,96,96,0,0,1,0],[92,36,0,0,89,19,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,33,96,0,0,0,0,0,1,0,0,1,0] >;

C3⋊SD64 in GAP, Magma, Sage, TeX

C_3\rtimes {\rm SD}_{64}
% in TeX

G:=Group("C3:SD64");
// GroupNames label

G:=SmallGroup(192,80);
// by ID

G=gap.SmallGroup(192,80);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,232,254,135,142,675,346,192,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^3=b^32=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^15>;
// generators/relations

Export

Subgroup lattice of C3⋊SD64 in TeX
Character table of C3⋊SD64 in TeX

׿
×
𝔽