Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C8

Direct product G=N×Q with N=C2×Dic3 and Q=C8
dρLabelID
Dic3×C2×C8192Dic3xC2xC8192,657

Semidirect products G=N:Q with N=C2×Dic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊C8 = (C2×Dic3)⋊C8φ: C8/C2C4 ⊆ Out C2×Dic396(C2xDic3):C8192,28
(C2×Dic3)⋊2C8 = (C2×C24)⋊5C4φ: C8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):2C8192,109
(C2×Dic3)⋊3C8 = Dic3.5M4(2)φ: C8/C4C2 ⊆ Out C2×Dic396(C2xDic3):3C8192,277
(C2×Dic3)⋊4C8 = C2×Dic3⋊C8φ: C8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):4C8192,658

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2×Dic3).C8 = C8.25D12φ: C8/C2C4 ⊆ Out C2×Dic3484(C2xDic3).C8192,73
(C2×Dic3).2C8 = Dic3⋊C16φ: C8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).2C8192,60
(C2×Dic3).3C8 = C4810C4φ: C8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).3C8192,61
(C2×Dic3).4C8 = D6⋊C16φ: C8/C4C2 ⊆ Out C2×Dic396(C2xDic3).4C8192,66
(C2×Dic3).5C8 = C2×D6.C8φ: C8/C4C2 ⊆ Out C2×Dic396(C2xDic3).5C8192,459
(C2×Dic3).6C8 = S3×M5(2)φ: C8/C4C2 ⊆ Out C2×Dic3484(C2xDic3).6C8192,465
(C2×Dic3).7C8 = Dic3×C16φ: trivial image192(C2xDic3).7C8192,59
(C2×Dic3).8C8 = S3×C2×C16φ: trivial image96(C2xDic3).8C8192,458

׿
×
𝔽