Copied to
clipboard

G = C8.25D12order 192 = 26·3

11st non-split extension by C8 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.25D12, C24.50D4, M5(2)⋊3S3, C12.6M4(2), (C22×S3).C8, (C2×Dic3).C8, (C2×C8).152D6, C31(C23.C8), C22.5(S3×C8), C2.10(D6⋊C8), C4.42(D6⋊C4), C8.46(C3⋊D4), C6.9(C22⋊C8), (C3×M5(2))⋊7C2, C12.C810C2, C4.10(C8⋊S3), C12.57(C22⋊C4), (C2×C24).263C22, (C2×C3⋊C8).2C4, (S3×C2×C4).1C4, (C2×C6).3(C2×C8), (C2×C4).137(C4×S3), (C2×C12).52(C2×C4), (C2×C8⋊S3).10C2, SmallGroup(192,73)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C8.25D12
C1C3C6C12C24C2×C24C2×C8⋊S3 — C8.25D12
C3C6C2×C6 — C8.25D12
C1C4C2×C8M5(2)

Generators and relations for C8.25D12
 G = < a,b,c | a8=1, b12=a6, c2=a, bab-1=a5, ac=ca, cbc-1=a3b11 >

Subgroups: 152 in 58 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, C16, C2×C8, C2×C8, M4(2), C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, M5(2), M5(2), C2×M4(2), C3⋊C16, C48, C8⋊S3, C2×C3⋊C8, C2×C24, S3×C2×C4, C23.C8, C12.C8, C3×M5(2), C2×C8⋊S3, C8.25D12
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C22⋊C4, C2×C8, M4(2), C4×S3, D12, C3⋊D4, C22⋊C8, S3×C8, C8⋊S3, D6⋊C4, C23.C8, D6⋊C8, C8.25D12

Smallest permutation representation of C8.25D12
On 48 points
Generators in S48
(1 19 37 7 25 43 13 31)(2 44 38 32 26 20 14 8)(3 21 39 9 27 45 15 33)(4 46 40 34 28 22 16 10)(5 23 41 11 29 47 17 35)(6 48 42 36 30 24 18 12)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 42 19 36 37 30 7 24 25 18 43 12 13 6 31 48)(2 11 44 29 38 47 32 17 26 35 20 5 14 23 8 41)(3 4 21 46 39 40 9 34 27 28 45 22 15 16 33 10)

G:=sub<Sym(48)| (1,19,37,7,25,43,13,31)(2,44,38,32,26,20,14,8)(3,21,39,9,27,45,15,33)(4,46,40,34,28,22,16,10)(5,23,41,11,29,47,17,35)(6,48,42,36,30,24,18,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42,19,36,37,30,7,24,25,18,43,12,13,6,31,48)(2,11,44,29,38,47,32,17,26,35,20,5,14,23,8,41)(3,4,21,46,39,40,9,34,27,28,45,22,15,16,33,10)>;

G:=Group( (1,19,37,7,25,43,13,31)(2,44,38,32,26,20,14,8)(3,21,39,9,27,45,15,33)(4,46,40,34,28,22,16,10)(5,23,41,11,29,47,17,35)(6,48,42,36,30,24,18,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42,19,36,37,30,7,24,25,18,43,12,13,6,31,48)(2,11,44,29,38,47,32,17,26,35,20,5,14,23,8,41)(3,4,21,46,39,40,9,34,27,28,45,22,15,16,33,10) );

G=PermutationGroup([[(1,19,37,7,25,43,13,31),(2,44,38,32,26,20,14,8),(3,21,39,9,27,45,15,33),(4,46,40,34,28,22,16,10),(5,23,41,11,29,47,17,35),(6,48,42,36,30,24,18,12)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42,19,36,37,30,7,24,25,18,43,12,13,6,31,48),(2,11,44,29,38,47,32,17,26,35,20,5,14,23,8,41),(3,4,21,46,39,40,9,34,27,28,45,22,15,16,33,10)]])

42 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D6A6B8A8B8C8D8E8F12A12B12C16A16B16C16D16E16F16G16H24A24B24C24D24E24F48A···48H
order12223444466888888121212161616161616161624242424242448···48
size1121221121224222212122244444121212122222444···4

42 irreducible representations

dim1111111122222222244
type++++++++
imageC1C2C2C2C4C4C8C8S3D4D6M4(2)D12C3⋊D4C4×S3C8⋊S3S3×C8C23.C8C8.25D12
kernelC8.25D12C12.C8C3×M5(2)C2×C8⋊S3C2×C3⋊C8S3×C2×C4C2×Dic3C22×S3M5(2)C24C2×C8C12C8C8C2×C4C4C22C3C1
# reps1111224412122224424

Matrix representation of C8.25D12 in GL4(𝔽5) generated by

0030
0403
4000
0201
,
0004
0030
0402
1010
,
0100
0030
0301
4010
G:=sub<GL(4,GF(5))| [0,0,4,0,0,4,0,2,3,0,0,0,0,3,0,1],[0,0,0,1,0,0,4,0,0,3,0,1,4,0,2,0],[0,0,0,4,1,0,3,0,0,3,0,1,0,0,1,0] >;

C8.25D12 in GAP, Magma, Sage, TeX

C_8._{25}D_{12}
% in TeX

G:=Group("C8.25D12");
// GroupNames label

G:=SmallGroup(192,73);
// by ID

G=gap.SmallGroup(192,73);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,100,570,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=1,b^12=a^6,c^2=a,b*a*b^-1=a^5,a*c=c*a,c*b*c^-1=a^3*b^11>;
// generators/relations

׿
×
𝔽