Extensions 1→N→G→Q→1 with N=C2 and Q=C4×S4

Direct product G=N×Q with N=C2 and Q=C4×S4
dρLabelID
C2×C4×S424C2xC4xS4192,1469


Non-split extensions G=N.Q with N=C2 and Q=C4×S4
extensionφ:Q→Aut NdρLabelID
C2.1(C4×S4) = C8×S4central extension (φ=1)243C2.1(C4xS4)192,958
C2.2(C4×S4) = C4×A4⋊C4central extension (φ=1)48C2.2(C4xS4)192,969
C2.3(C4×S4) = C4×CSU2(𝔽3)central stem extension (φ=1)64C2.3(C4xS4)192,946
C2.4(C4×S4) = CSU2(𝔽3)⋊C4central stem extension (φ=1)64C2.4(C4xS4)192,947
C2.5(C4×S4) = C4×GL2(𝔽3)central stem extension (φ=1)32C2.5(C4xS4)192,951
C2.6(C4×S4) = GL2(𝔽3)⋊C4central stem extension (φ=1)32C2.6(C4xS4)192,953
C2.7(C4×S4) = C8⋊S4central stem extension (φ=1)246C2.7(C4xS4)192,959
C2.8(C4×S4) = CU2(𝔽3)central stem extension (φ=1)322C2.8(C4xS4)192,963
C2.9(C4×S4) = C8.5S4central stem extension (φ=1)324C2.9(C4xS4)192,964
C2.10(C4×S4) = C24.3D6central stem extension (φ=1)48C2.10(C4xS4)192,970
C2.11(C4×S4) = C24.5D6central stem extension (φ=1)24C2.11(C4xS4)192,972

׿
×
𝔽