Copied to
clipboard

G = C8.5S4order 192 = 26·3

5th non-split extension by C8 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C8.5S4, U2(F3):5C2, GL2(F3):2C4, CSU2(F3):2C4, C8.A4:6C2, C8oD4:4S3, C2.9(C4xS4), C4.29(C2xS4), C4.6S4.C2, Q8.5(C4xS3), C4oD4.10D6, C4.A4.12C22, SL2(F3).4(C2xC4), SmallGroup(192,964)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(F3) — C8.5S4
C1C2Q8SL2(F3)C4.A4C4.6S4 — C8.5S4
SL2(F3) — C8.5S4
C1C4C8

Generators and relations for C8.5S4
 G = < a,b,c,d,e | a8=d3=e2=1, b2=c2=a4, ab=ba, ac=ca, ad=da, eae=a5, cbc-1=a4b, dbd-1=a4bc, ebe=bc, dcd-1=b, ece=a4c, ede=d-1 >

Subgroups: 215 in 62 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2xC4, D4, Q8, Q8, Dic3, C12, D6, C42, C2xC8, M4(2), D8, SD16, Q16, C4oD4, C4oD4, C3:C8, C24, SL2(F3), C4xS3, C8:C4, C4wrC2, C8.C4, C8oD4, C8oD4, C4oD8, C8:S3, CSU2(F3), GL2(F3), C4.A4, C8.26D4, U2(F3), C8.A4, C4.6S4, C8.5S4
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, C4xS3, S4, C2xS4, C4xS4, C8.5S4

Character table of C8.5S4

 class 12A2B2C34A4B4C4D4E4F68A8B8C8D8E8F8G8H12A12B24A24B24C24D
 size 1161281161212128226612121212888888
ρ111111111111111111111111111    trivial
ρ211111111-1-111-1-1-1-1-11-1111-1-1-1-1    linear of order 2
ρ3111-11111-1-1-111111-1-1-1-1111111    linear of order 2
ρ4111-1111111-11-1-1-1-11-11-111-1-1-1-1    linear of order 2
ρ511-111-1-11i-i-11-ii-iii-1-i1-1-1-ii-ii    linear of order 4
ρ611-111-1-11-ii-11i-ii-i-i-1i1-1-1i-ii-i    linear of order 4
ρ711-1-11-1-11-ii11-ii-ii-i1i-1-1-1-ii-ii    linear of order 4
ρ811-1-11-1-11i-i11i-ii-ii1-i-1-1-1i-ii-i    linear of order 4
ρ92220-1222000-122220000-1-1-1-1-1-1    orthogonal lifted from S3
ρ102220-1222000-1-2-2-2-20000-1-11111    orthogonal lifted from D6
ρ1122-20-1-2-22000-12i-2i2i-2i000011-ii-ii    complex lifted from C4xS3
ρ1222-20-1-2-22000-1-2i2i-2i2i000011i-ii-i    complex lifted from C4xS3
ρ1333-11033-11110-3-311-1-1-1-1000000    orthogonal lifted from C2xS4
ρ1433-1-1033-1-1-1-10-3-3111111000000    orthogonal lifted from C2xS4
ρ1533-11033-1-1-11033-1-11-11-1000000    orthogonal lifted from S4
ρ1633-1-1033-111-1033-1-1-11-11000000    orthogonal lifted from S4
ρ17331-10-3-3-1-ii103i-3i-iii-1-i1000000    complex lifted from C4xS4
ρ1833110-3-3-1i-i-103i-3i-ii-i1i-1000000    complex lifted from C4xS4
ρ19331-10-3-3-1i-i10-3i3ii-i-i-1i1000000    complex lifted from C4xS4
ρ2033110-3-3-1-ii-10-3i3ii-ii1-i-1000000    complex lifted from C4xS4
ρ214-400-2-4i4i0000200000000-2i2i0000    complex faithful
ρ224-400-24i-4i00002000000002i-2i0000    complex faithful
ρ234-4001-4i4i0000-100000000i-i8ζ3887ζ38785ζ38583ζ383    complex faithful
ρ244-40014i-4i0000-100000000-ii87ζ3878ζ3883ζ38385ζ385    complex faithful
ρ254-40014i-4i0000-100000000-ii83ζ38385ζ38587ζ3878ζ38    complex faithful
ρ264-4001-4i4i0000-100000000i-i85ζ38583ζ3838ζ3887ζ387    complex faithful

Smallest permutation representation of C8.5S4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 5 10)(2 15 6 11)(3 16 7 12)(4 9 8 13)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)
(1 25 5 29)(2 26 6 30)(3 27 7 31)(4 28 8 32)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)
(9 28 22)(10 29 23)(11 30 24)(12 31 17)(13 32 18)(14 25 19)(15 26 20)(16 27 21)
(2 6)(4 8)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)(25 29)(27 31)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,28,22)(10,29,23)(11,30,24)(12,31,17)(13,32,18)(14,25,19)(15,26,20)(16,27,21), (2,6)(4,8)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17)(25,29)(27,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,28,22)(10,29,23)(11,30,24)(12,31,17)(13,32,18)(14,25,19)(15,26,20)(16,27,21), (2,6)(4,8)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17)(25,29)(27,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,5,10),(2,15,6,11),(3,16,7,12),(4,9,8,13),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26)], [(1,25,5,29),(2,26,6,30),(3,27,7,31),(4,28,8,32),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17)], [(9,28,22),(10,29,23),(11,30,24),(12,31,17),(13,32,18),(14,25,19),(15,26,20),(16,27,21)], [(2,6),(4,8),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17),(25,29),(27,31)]])

Matrix representation of C8.5S4 in GL4(F5) generated by

0004
0043
4300
3000
,
1300
1400
0030
0032
,
2100
0300
0013
0014
,
2300
1200
0014
0033
,
0010
0022
1000
4300
G:=sub<GL(4,GF(5))| [0,0,4,3,0,0,3,0,0,4,0,0,4,3,0,0],[1,1,0,0,3,4,0,0,0,0,3,3,0,0,0,2],[2,0,0,0,1,3,0,0,0,0,1,1,0,0,3,4],[2,1,0,0,3,2,0,0,0,0,1,3,0,0,4,3],[0,0,1,4,0,0,0,3,1,2,0,0,0,2,0,0] >;

C8.5S4 in GAP, Magma, Sage, TeX

C_8._5S_4
% in TeX

G:=Group("C8.5S4");
// GroupNames label

G:=SmallGroup(192,964);
// by ID

G=gap.SmallGroup(192,964);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,1373,36,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=d^3=e^2=1,b^2=c^2=a^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^5,c*b*c^-1=a^4*b,d*b*d^-1=a^4*b*c,e*b*e=b*c,d*c*d^-1=b,e*c*e=a^4*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C8.5S4 in TeX

׿
x
:
Z
F
o
wr
Q
<