Copied to
clipboard

G = C8.5S4order 192 = 26·3

5th non-split extension by C8 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C8.5S4, U2(𝔽3)⋊5C2, GL2(𝔽3)⋊2C4, CSU2(𝔽3)⋊2C4, C8.A46C2, C8○D44S3, C2.9(C4×S4), C4.29(C2×S4), C4.6S4.C2, Q8.5(C4×S3), C4○D4.10D6, C4.A4.12C22, SL2(𝔽3).4(C2×C4), SmallGroup(192,964)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C8.5S4
C1C2Q8SL2(𝔽3)C4.A4C4.6S4 — C8.5S4
SL2(𝔽3) — C8.5S4
C1C4C8

Generators and relations for C8.5S4
 G = < a,b,c,d,e | a8=d3=e2=1, b2=c2=a4, ab=ba, ac=ca, ad=da, eae=a5, cbc-1=a4b, dbd-1=a4bc, ebe=bc, dcd-1=b, ece=a4c, ede=d-1 >

Subgroups: 215 in 62 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, D4, Q8, Q8, Dic3, C12, D6, C42, C2×C8, M4(2), D8, SD16, Q16, C4○D4, C4○D4, C3⋊C8, C24, SL2(𝔽3), C4×S3, C8⋊C4, C4≀C2, C8.C4, C8○D4, C8○D4, C4○D8, C8⋊S3, CSU2(𝔽3), GL2(𝔽3), C4.A4, C8.26D4, U2(𝔽3), C8.A4, C4.6S4, C8.5S4
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, C4×S3, S4, C2×S4, C4×S4, C8.5S4

Character table of C8.5S4

 class 12A2B2C34A4B4C4D4E4F68A8B8C8D8E8F8G8H12A12B24A24B24C24D
 size 1161281161212128226612121212888888
ρ111111111111111111111111111    trivial
ρ211111111-1-111-1-1-1-1-11-1111-1-1-1-1    linear of order 2
ρ3111-11111-1-1-111111-1-1-1-1111111    linear of order 2
ρ4111-1111111-11-1-1-1-11-11-111-1-1-1-1    linear of order 2
ρ511-111-1-11i-i-11-ii-iii-1-i1-1-1-ii-ii    linear of order 4
ρ611-111-1-11-ii-11i-ii-i-i-1i1-1-1i-ii-i    linear of order 4
ρ711-1-11-1-11-ii11-ii-ii-i1i-1-1-1-ii-ii    linear of order 4
ρ811-1-11-1-11i-i11i-ii-ii1-i-1-1-1i-ii-i    linear of order 4
ρ92220-1222000-122220000-1-1-1-1-1-1    orthogonal lifted from S3
ρ102220-1222000-1-2-2-2-20000-1-11111    orthogonal lifted from D6
ρ1122-20-1-2-22000-12i-2i2i-2i000011-ii-ii    complex lifted from C4×S3
ρ1222-20-1-2-22000-1-2i2i-2i2i000011i-ii-i    complex lifted from C4×S3
ρ1333-11033-11110-3-311-1-1-1-1000000    orthogonal lifted from C2×S4
ρ1433-1-1033-1-1-1-10-3-3111111000000    orthogonal lifted from C2×S4
ρ1533-11033-1-1-11033-1-11-11-1000000    orthogonal lifted from S4
ρ1633-1-1033-111-1033-1-1-11-11000000    orthogonal lifted from S4
ρ17331-10-3-3-1-ii103i-3i-iii-1-i1000000    complex lifted from C4×S4
ρ1833110-3-3-1i-i-103i-3i-ii-i1i-1000000    complex lifted from C4×S4
ρ19331-10-3-3-1i-i10-3i3ii-i-i-1i1000000    complex lifted from C4×S4
ρ2033110-3-3-1-ii-10-3i3ii-ii1-i-1000000    complex lifted from C4×S4
ρ214-400-2-4i4i0000200000000-2i2i0000    complex faithful
ρ224-400-24i-4i00002000000002i-2i0000    complex faithful
ρ234-4001-4i4i0000-100000000i-i8ζ3887ζ38785ζ38583ζ383    complex faithful
ρ244-40014i-4i0000-100000000-ii87ζ3878ζ3883ζ38385ζ385    complex faithful
ρ254-40014i-4i0000-100000000-ii83ζ38385ζ38587ζ3878ζ38    complex faithful
ρ264-4001-4i4i0000-100000000i-i85ζ38583ζ3838ζ3887ζ387    complex faithful

Smallest permutation representation of C8.5S4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 5 10)(2 15 6 11)(3 16 7 12)(4 9 8 13)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)
(1 25 5 29)(2 26 6 30)(3 27 7 31)(4 28 8 32)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)
(9 28 22)(10 29 23)(11 30 24)(12 31 17)(13 32 18)(14 25 19)(15 26 20)(16 27 21)
(2 6)(4 8)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)(25 29)(27 31)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,28,22)(10,29,23)(11,30,24)(12,31,17)(13,32,18)(14,25,19)(15,26,20)(16,27,21), (2,6)(4,8)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17)(25,29)(27,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,28,22)(10,29,23)(11,30,24)(12,31,17)(13,32,18)(14,25,19)(15,26,20)(16,27,21), (2,6)(4,8)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17)(25,29)(27,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,5,10),(2,15,6,11),(3,16,7,12),(4,9,8,13),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26)], [(1,25,5,29),(2,26,6,30),(3,27,7,31),(4,28,8,32),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17)], [(9,28,22),(10,29,23),(11,30,24),(12,31,17),(13,32,18),(14,25,19),(15,26,20),(16,27,21)], [(2,6),(4,8),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17),(25,29),(27,31)]])

Matrix representation of C8.5S4 in GL4(𝔽5) generated by

0004
0043
4300
3000
,
1300
1400
0030
0032
,
2100
0300
0013
0014
,
2300
1200
0014
0033
,
0010
0022
1000
4300
G:=sub<GL(4,GF(5))| [0,0,4,3,0,0,3,0,0,4,0,0,4,3,0,0],[1,1,0,0,3,4,0,0,0,0,3,3,0,0,0,2],[2,0,0,0,1,3,0,0,0,0,1,1,0,0,3,4],[2,1,0,0,3,2,0,0,0,0,1,3,0,0,4,3],[0,0,1,4,0,0,0,3,1,2,0,0,0,2,0,0] >;

C8.5S4 in GAP, Magma, Sage, TeX

C_8._5S_4
% in TeX

G:=Group("C8.5S4");
// GroupNames label

G:=SmallGroup(192,964);
// by ID

G=gap.SmallGroup(192,964);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,1373,36,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=d^3=e^2=1,b^2=c^2=a^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^5,c*b*c^-1=a^4*b,d*b*d^-1=a^4*b*c,e*b*e=b*c,d*c*d^-1=b,e*c*e=a^4*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C8.5S4 in TeX

׿
×
𝔽