Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊S4

Direct product G=N×Q with N=C2 and Q=C4⋊S4
dρLabelID
C2×C4⋊S424C2xC4:S4192,1470


Non-split extensions G=N.Q with N=C2 and Q=C4⋊S4
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊S4) = C24.4D6central extension (φ=1)48C2.1(C4:S4)192,971
C2.2(C4⋊S4) = C24.5D6central extension (φ=1)24C2.2(C4:S4)192,972
C2.3(C4⋊S4) = Q8.D12central stem extension (φ=1)64C2.3(C4:S4)192,949
C2.4(C4⋊S4) = Q8⋊D12central stem extension (φ=1)32C2.4(C4:S4)192,952
C2.5(C4⋊S4) = Q8.2D12central stem extension (φ=1)32C2.5(C4:S4)192,954
C2.6(C4⋊S4) = A4⋊Q16central stem extension (φ=1)486-C2.6(C4:S4)192,957
C2.7(C4⋊S4) = C82S4central stem extension (φ=1)246C2.7(C4:S4)192,960
C2.8(C4⋊S4) = A4⋊D8central stem extension (φ=1)246+C2.8(C4:S4)192,961
C2.9(C4⋊S4) = C8.S4central stem extension (φ=1)644-C2.9(C4:S4)192,962
C2.10(C4⋊S4) = C8.4S4central stem extension (φ=1)324C2.10(C4:S4)192,965
C2.11(C4⋊S4) = C8.3S4central stem extension (φ=1)324+C2.11(C4:S4)192,966

׿
×
𝔽