Copied to
clipboard

G = C8.4S4order 192 = 26·3

4th non-split extension by C8 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C8.4S4, Q8.4D12, SL2(𝔽3).4D4, C8○D41S3, C8.A42C2, C4.20(C2×S4), C4.3S4.C2, C2.10(C4⋊S4), C4.S41C2, C4○D4.11D6, C4.A4.8C22, SmallGroup(192,965)

Series: Derived Chief Lower central Upper central

C1C2Q8C4.A4 — C8.4S4
C1C2Q8SL2(𝔽3)C4.A4C4.3S4 — C8.4S4
SL2(𝔽3)C4.A4 — C8.4S4
C1C2C4C8

Generators and relations for C8.4S4
 G = < a,b,c,d,e | a8=d3=e2=1, b2=c2=a4, ab=ba, ac=ca, ad=da, eae=a3, cbc-1=a4b, dbd-1=a4bc, ebe=bc, dcd-1=b, ece=a4c, ede=d-1 >

Subgroups: 293 in 62 conjugacy classes, 13 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, D4, Q8, Q8, C23, Dic3, C12, D6, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C24, SL2(𝔽3), Dic6, D12, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C24⋊C2, CSU2(𝔽3), GL2(𝔽3), C4.A4, D4.3D4, C8.A4, C4.S4, C4.3S4, C8.4S4
Quotients: C1, C2, C22, S3, D4, D6, D12, S4, C2×S4, C4⋊S4, C8.4S4

Character table of C8.4S4

 class 12A2B2C34A4B4C68A8B8C8D8E12A12B24A24B24C24D
 size 1162482624822122424888888
ρ111111111111111111111    trivial
ρ2111-111111-1-1-11-111-1-1-1-1    linear of order 2
ρ3111-1111-11111-1-1111111    linear of order 2
ρ41111111-11-1-1-1-1111-1-1-1-1    linear of order 2
ρ522-202-220200000-2-20000    orthogonal lifted from D4
ρ62220-1220-1-2-2-200-1-11111    orthogonal lifted from D6
ρ72220-1220-122200-1-1-1-1-1-1    orthogonal lifted from S3
ρ822-20-1-220-100000113-33-3    orthogonal lifted from D12
ρ922-20-1-220-10000011-33-33    orthogonal lifted from D12
ρ1033-1103-11033-1-1-1000000    orthogonal lifted from S4
ρ1133-1-103-1-1033-111000000    orthogonal lifted from S4
ρ1233-1103-1-10-3-311-1000000    orthogonal lifted from C2×S4
ρ1333-1-103-110-3-31-11000000    orthogonal lifted from C2×S4
ρ144-400-200022-2-2-200000-2-2--2--2    complex faithful
ρ154-400-20002-2-22-200000--2--2-2-2    complex faithful
ρ164-4001000-1-2-22-20003-3ζ83ζ3838ζ3ζ83ζ32838ζ32ζ87ζ38785ζ3ζ87ζ328785ζ32    complex faithful
ρ174-4001000-12-2-2-20003-3ζ87ζ38785ζ3ζ87ζ328785ζ32ζ83ζ3838ζ3ζ83ζ32838ζ32    complex faithful
ρ184-4001000-1-2-22-2000-33ζ83ζ32838ζ32ζ83ζ3838ζ3ζ87ζ328785ζ32ζ87ζ38785ζ3    complex faithful
ρ194-4001000-12-2-2-2000-33ζ87ζ328785ζ32ζ87ζ38785ζ3ζ83ζ32838ζ32ζ83ζ3838ζ3    complex faithful
ρ2066200-6-20000000000000    orthogonal lifted from C4⋊S4

Smallest permutation representation of C8.4S4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 5 10)(2 15 6 11)(3 16 7 12)(4 9 8 13)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)
(1 25 5 29)(2 26 6 30)(3 27 7 31)(4 28 8 32)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)
(9 28 22)(10 29 23)(11 30 24)(12 31 17)(13 32 18)(14 25 19)(15 26 20)(16 27 21)
(2 4)(3 7)(6 8)(9 24)(10 19)(11 22)(12 17)(13 20)(14 23)(15 18)(16 21)(25 29)(26 32)(28 30)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,28,22)(10,29,23)(11,30,24)(12,31,17)(13,32,18)(14,25,19)(15,26,20)(16,27,21), (2,4)(3,7)(6,8)(9,24)(10,19)(11,22)(12,17)(13,20)(14,23)(15,18)(16,21)(25,29)(26,32)(28,30)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17), (9,28,22)(10,29,23)(11,30,24)(12,31,17)(13,32,18)(14,25,19)(15,26,20)(16,27,21), (2,4)(3,7)(6,8)(9,24)(10,19)(11,22)(12,17)(13,20)(14,23)(15,18)(16,21)(25,29)(26,32)(28,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,5,10),(2,15,6,11),(3,16,7,12),(4,9,8,13),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26)], [(1,25,5,29),(2,26,6,30),(3,27,7,31),(4,28,8,32),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17)], [(9,28,22),(10,29,23),(11,30,24),(12,31,17),(13,32,18),(14,25,19),(15,26,20),(16,27,21)], [(2,4),(3,7),(6,8),(9,24),(10,19),(11,22),(12,17),(13,20),(14,23),(15,18),(16,21),(25,29),(26,32),(28,30)]])

Matrix representation of C8.4S4 in GL4(𝔽3) generated by

0122
0001
2021
0102
,
0112
0120
0220
1010
,
2221
0102
2212
0202
,
2112
1212
0101
2010
,
1000
0100
1020
0202
G:=sub<GL(4,GF(3))| [0,0,2,0,1,0,0,1,2,0,2,0,2,1,1,2],[0,0,0,1,1,1,2,0,1,2,2,1,2,0,0,0],[2,0,2,0,2,1,2,2,2,0,1,0,1,2,2,2],[2,1,0,2,1,2,1,0,1,1,0,1,2,2,1,0],[1,0,1,0,0,1,0,2,0,0,2,0,0,0,0,2] >;

C8.4S4 in GAP, Magma, Sage, TeX

C_8._4S_4
% in TeX

G:=Group("C8.4S4");
// GroupNames label

G:=SmallGroup(192,965);
// by ID

G=gap.SmallGroup(192,965);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,85,36,2102,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=d^3=e^2=1,b^2=c^2=a^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^3,c*b*c^-1=a^4*b,d*b*d^-1=a^4*b*c,e*b*e=b*c,d*c*d^-1=b,e*c*e=a^4*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C8.4S4 in TeX

׿
×
𝔽