non-abelian, soluble, monomial
Aliases: C8⋊2S4, A4⋊1SD16, C23.9D12, (C8×A4)⋊2C2, C4⋊S4.1C2, A4⋊Q8⋊1C2, C2.7(C4⋊S4), C4.17(C2×S4), (C22×C8)⋊3S3, (C2×A4).2D4, C22⋊(C24⋊C2), (C4×A4).9C22, (C22×C4).14D6, SmallGroup(192,960)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8⋊2S4
G = < a,b,c,d,e | a8=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a3, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Subgroups: 350 in 72 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, D4, Q8, C23, C23, Dic3, C12, A4, D6, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, Dic6, D12, S4, C2×A4, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C24⋊C2, A4⋊C4, C4×A4, C2×S4, C8⋊8D4, C8×A4, A4⋊Q8, C4⋊S4, C8⋊2S4
Quotients: C1, C2, C22, S3, D4, D6, SD16, D12, S4, C24⋊C2, C2×S4, C4⋊S4, C8⋊2S4
Character table of C8⋊2S4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 3 | 3 | 24 | 8 | 2 | 6 | 24 | 24 | 24 | 8 | 2 | 2 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ12 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -√-2 | √-2 | √-2 | -√-2 | -√3 | √3 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | complex lifted from C24⋊C2 |
ρ13 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | √-2 | -√-2 | -√-2 | √-2 | -√3 | √3 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | complex lifted from C24⋊C2 |
ρ14 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -√-2 | √-2 | √-2 | -√-2 | √3 | -√3 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | complex lifted from C24⋊C2 |
ρ15 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | √-2 | -√-2 | -√-2 | √-2 | √3 | -√3 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | complex lifted from C24⋊C2 |
ρ16 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | -1 | 1 | -1 | 1 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ17 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | -1 | -1 | 1 | 1 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ18 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | -1 | 1 | -1 | -1 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ19 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | -1 | -1 | 1 | -1 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ20 | 6 | 6 | -2 | -2 | 0 | 0 | -6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4⋊S4 |
ρ21 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3√-2 | 3√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3√-2 | -3√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
(1 11 19)(2 12 20)(3 13 21)(4 14 22)(5 15 23)(6 16 24)(7 9 17)(8 10 18)
(2 4)(3 7)(6 8)(9 21)(10 24)(11 19)(12 22)(13 17)(14 20)(15 23)(16 18)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,11,19)(2,12,20)(3,13,21)(4,14,22)(5,15,23)(6,16,24)(7,9,17)(8,10,18), (2,4)(3,7)(6,8)(9,21)(10,24)(11,19)(12,22)(13,17)(14,20)(15,23)(16,18)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,11,19)(2,12,20)(3,13,21)(4,14,22)(5,15,23)(6,16,24)(7,9,17)(8,10,18), (2,4)(3,7)(6,8)(9,21)(10,24)(11,19)(12,22)(13,17)(14,20)(15,23)(16,18) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)], [(1,11,19),(2,12,20),(3,13,21),(4,14,22),(5,15,23),(6,16,24),(7,9,17),(8,10,18)], [(2,4),(3,7),(6,8),(9,21),(10,24),(11,19),(12,22),(13,17),(14,20),(15,23),(16,18)]])
G:=TransitiveGroup(24,325);
Matrix representation of C8⋊2S4 ►in GL5(𝔽73)
61 | 67 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 72 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 72 |
0 | 0 | 1 | 0 | 72 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 1 |
72 | 72 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [61,12,0,0,0,67,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,72,72,72,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,72,72,72],[1,0,0,0,0,0,1,0,0,0,0,0,72,72,72,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,72,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C8⋊2S4 in GAP, Magma, Sage, TeX
C_8\rtimes_2S_4
% in TeX
G:=Group("C8:2S4");
// GroupNames label
G:=SmallGroup(192,960);
// by ID
G=gap.SmallGroup(192,960);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,85,36,254,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e|a^8=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^3,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export