extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D12)⋊1C2 = D12⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):1C2 | 192,293 |
(C2×C4○D12)⋊2C2 = C42.276D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):2C2 | 192,1036 |
(C2×C4○D12)⋊3C2 = C24.38D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):3C2 | 192,1049 |
(C2×C4○D12)⋊4C2 = C6.2- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):4C2 | 192,1066 |
(C2×C4○D12)⋊5C2 = C42⋊14D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):5C2 | 192,1106 |
(C2×C4○D12)⋊6C2 = C42.228D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):6C2 | 192,1107 |
(C2×C4○D12)⋊7C2 = D12⋊23D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):7C2 | 192,1109 |
(C2×C4○D12)⋊8C2 = D12⋊24D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):8C2 | 192,1110 |
(C2×C4○D12)⋊9C2 = Dic6⋊23D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):9C2 | 192,1111 |
(C2×C4○D12)⋊10C2 = Dic6⋊24D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):10C2 | 192,1112 |
(C2×C4○D12)⋊11C2 = C6.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):11C2 | 192,1213 |
(C2×C4○D12)⋊12C2 = C6.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):12C2 | 192,1214 |
(C2×C4○D12)⋊13C2 = C2×C4○D24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):13C2 | 192,1300 |
(C2×C4○D12)⋊14C2 = C24.83D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):14C2 | 192,1350 |
(C2×C4○D12)⋊15C2 = D12⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):15C2 | 192,596 |
(C2×C4○D12)⋊16C2 = C6.2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):16C2 | 192,1069 |
(C2×C4○D12)⋊17C2 = C42⋊10D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):17C2 | 192,1083 |
(C2×C4○D12)⋊18C2 = C42⋊11D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):18C2 | 192,1084 |
(C2×C4○D12)⋊19C2 = Dic6⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):19C2 | 192,1158 |
(C2×C4○D12)⋊20C2 = C6.382+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):20C2 | 192,1166 |
(C2×C4○D12)⋊21C2 = C6.722- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):21C2 | 192,1167 |
(C2×C4○D12)⋊22C2 = D12⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):22C2 | 192,1171 |
(C2×C4○D12)⋊23C2 = C6.172- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):23C2 | 192,1188 |
(C2×C4○D12)⋊24C2 = D12⋊22D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):24C2 | 192,1190 |
(C2×C4○D12)⋊25C2 = Dic6⋊22D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):25C2 | 192,1192 |
(C2×C4○D12)⋊26C2 = C2×C8⋊D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):26C2 | 192,1305 |
(C2×C4○D12)⋊27C2 = C24.9C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12):27C2 | 192,1307 |
(C2×C4○D12)⋊28C2 = C2×D12⋊6C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):28C2 | 192,1352 |
(C2×C4○D12)⋊29C2 = C24.52D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):29C2 | 192,1364 |
(C2×C4○D12)⋊30C2 = C2×Q8.13D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):30C2 | 192,1380 |
(C2×C4○D12)⋊31C2 = C12.C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12):31C2 | 192,1381 |
(C2×C4○D12)⋊32C2 = (C2×C12)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):32C2 | 192,1391 |
(C2×C4○D12)⋊33C2 = C6.1082- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):33C2 | 192,1392 |
(C2×C4○D12)⋊34C2 = C2×D4⋊6D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):34C2 | 192,1516 |
(C2×C4○D12)⋊35C2 = C2×Q8.15D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):35C2 | 192,1519 |
(C2×C4○D12)⋊36C2 = C2×S3×C4○D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):36C2 | 192,1520 |
(C2×C4○D12)⋊37C2 = C2×D4○D12 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12):37C2 | 192,1521 |
(C2×C4○D12)⋊38C2 = C2×Q8○D12 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12):38C2 | 192,1522 |
(C2×C4○D12)⋊39C2 = C6.C25 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12):39C2 | 192,1523 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D12).1C2 = D6⋊C8⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).1C2 | 192,286 |
(C2×C4○D12).2C2 = D12.32D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).2C2 | 192,292 |
(C2×C4○D12).3C2 = C2×C42⋊4S3 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12).3C2 | 192,486 |
(C2×C4○D12).4C2 = (C22×C8)⋊7S3 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).4C2 | 192,669 |
(C2×C4○D12).5C2 = C23.28D12 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).5C2 | 192,672 |
(C2×C4○D12).6C2 = C4○D12⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).6C2 | 192,525 |
(C2×C4○D12).7C2 = C4.(C2×D12) | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).7C2 | 192,561 |
(C2×C4○D12).8C2 = C42⋊6D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12).8C2 | 192,564 |
(C2×C4○D12).9C2 = (C2×D12)⋊13C4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12).9C2 | 192,565 |
(C2×C4○D12).10C2 = D12.37D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).10C2 | 192,606 |
(C2×C4○D12).11C2 = D6⋊C8⋊40C2 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).11C2 | 192,688 |
(C2×C4○D12).12C2 = M4(2).31D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12).12C2 | 192,691 |
(C2×C4○D12).13C2 = C23.54D12 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).13C2 | 192,692 |
(C2×C4○D12).14C2 = C2×D12⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | | (C2xC4oD12).14C2 | 192,697 |
(C2×C4○D12).15C2 = M4(2)⋊24D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12).15C2 | 192,698 |
(C2×C4○D12).16C2 = C6.82+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).16C2 | 192,1063 |
(C2×C4○D12).17C2 = C42.188D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).17C2 | 192,1081 |
(C2×C4○D12).18C2 = C42.91D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).18C2 | 192,1082 |
(C2×C4○D12).19C2 = C42.92D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).19C2 | 192,1085 |
(C2×C4○D12).20C2 = C6.162- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).20C2 | 192,1187 |
(C2×C4○D12).21C2 = C2×D12.C4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).21C2 | 192,1303 |
(C2×C4○D12).22C2 = M4(2)⋊26D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 48 | 4 | (C2xC4oD12).22C2 | 192,1304 |
(C2×C4○D12).23C2 = C2×C8.D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).23C2 | 192,1306 |
(C2×C4○D12).24C2 = C2×Q8.11D6 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).24C2 | 192,1367 |
(C2×C4○D12).25C2 = C6.442- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D12 | 96 | | (C2xC4oD12).25C2 | 192,1375 |
(C2×C4○D12).26C2 = C4×C4○D12 | φ: trivial image | 96 | | (C2xC4oD12).26C2 | 192,1033 |
(C2×C4○D12).27C2 = C2×C8○D12 | φ: trivial image | 96 | | (C2xC4oD12).27C2 | 192,1297 |