direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2xC4oD12, C6.4C24, D6.1C23, C23.31D6, D12:12C22, C12.43C23, Dic6:11C22, Dic3.2C23, (C2xC4)oD12, C4o(C2xD12), (C2xC4):10D6, C4o(C2xDic6), (C2xC4)oDic6, C4o(C4oD12), C6:1(C4oD4), (C22xC4):8S3, (C2xD12):14C2, (C4xS3):6C22, (C22xC12):8C2, C3:D4:6C22, C2.5(S3xC23), (C2xC12):13C22, (C2xDic6):15C2, (C2xC6).65C23, C4.43(C22xS3), C22.5(C22xS3), (C22xC6).46C22, (C22xS3).28C22, (C2xDic3).43C22, C4o(C2xC3:D4), C3:1(C2xC4oD4), (S3xC2xC4):15C2, (C2xC4)o(C2xD12), (C2xC4)o(C3:D4), (C2xC4)o(C2xDic6), (C2xC3:D4):12C2, (C2xC4)o(C2xC3:D4), SmallGroup(96,208)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xC4oD12
G = < a,b,c,d | a2=b4=d2=1, c6=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c5 >
Subgroups: 322 in 164 conjugacy classes, 89 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, C2xC4oD4, C2xDic6, S3xC2xC4, C2xD12, C4oD12, C2xC3:D4, C22xC12, C2xC4oD12
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, C4oD12, S3xC23, C2xC4oD12
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)(25 45)(26 46)(27 47)(28 48)(29 37)(30 38)(31 39)(32 40)(33 41)(34 42)(35 43)(36 44)
(1 39 7 45)(2 40 8 46)(3 41 9 47)(4 42 10 48)(5 43 11 37)(6 44 12 38)(13 30 19 36)(14 31 20 25)(15 32 21 26)(16 33 22 27)(17 34 23 28)(18 35 24 29)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 13)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 48)(34 47)(35 46)(36 45)
G:=sub<Sym(48)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,45)(26,46)(27,47)(28,48)(29,37)(30,38)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44), (1,39,7,45)(2,40,8,46)(3,41,9,47)(4,42,10,48)(5,43,11,37)(6,44,12,38)(13,30,19,36)(14,31,20,25)(15,32,21,26)(16,33,22,27)(17,34,23,28)(18,35,24,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,48)(34,47)(35,46)(36,45)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,45)(26,46)(27,47)(28,48)(29,37)(30,38)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44), (1,39,7,45)(2,40,8,46)(3,41,9,47)(4,42,10,48)(5,43,11,37)(6,44,12,38)(13,30,19,36)(14,31,20,25)(15,32,21,26)(16,33,22,27)(17,34,23,28)(18,35,24,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,48)(34,47)(35,46)(36,45) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13),(25,45),(26,46),(27,47),(28,48),(29,37),(30,38),(31,39),(32,40),(33,41),(34,42),(35,43),(36,44)], [(1,39,7,45),(2,40,8,46),(3,41,9,47),(4,42,10,48),(5,43,11,37),(6,44,12,38),(13,30,19,36),(14,31,20,25),(15,32,21,26),(16,33,22,27),(17,34,23,28),(18,35,24,29)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,13),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,48),(34,47),(35,46),(36,45)]])
C2xC4oD12 is a maximal subgroup of
D6:C8:C2 D12.32D4 D12:14D4 C4oD12:C4 C4.(C2xD12) C42:6D6 (C2xD12):13C4 D12:17D4 D12.37D4 (C22xC8):7S3 C23.28D12 D6:C8:40C2 M4(2).31D6 C23.54D12 M4(2):24D6 C42.276D6 C24.38D6 C6.82+ 1+4 C6.2- 1+4 C6.2+ 1+4 C42.188D6 C42.91D6 C42:10D6 C42:11D6 C42.92D6 C42:14D6 C42.228D6 D12:23D4 D12:24D4 Dic6:23D4 Dic6:24D4 Dic6:20D4 C6.382+ 1+4 C6.722- 1+4 D12:20D4 C6.162- 1+4 C6.172- 1+4 D12:22D4 Dic6:22D4 C6.1212+ 1+4 C6.822- 1+4 M4(2):26D6 C24.9C23 C24.83D6 C24.52D6 C6.442- 1+4 C12.C24 (C2xC12):17D4 C6.1082- 1+4 C2xS3xC4oD4 C6.C25
C2xC4oD12 is a maximal quotient of
C2xC4xDic6 C42.274D6 C2xC4xD12 C42.276D6 C42.277D6 C24.38D6 C24.41D6 C24.42D6 C6.2- 1+4 C6.102+ 1+4 C6.52- 1+4 C6.112+ 1+4 C6.62- 1+4 C42.89D6 C42:12D6 C42.93D6 C42.94D6 C42.95D6 C42.96D6 C42.97D6 C42.98D6 C42.99D6 C42.100D6 C42.102D6 C42.104D6 C42.105D6 C42.106D6 C42:14D6 C42.228D6 D12:23D4 D12:24D4 Dic6:23D4 Dic6:24D4 C42:18D6 C42.229D6 C42.113D6 C42.114D6 C42:19D6 C42.115D6 C42.116D6 C42.117D6 C42.118D6 C42.119D6 Dic6:10Q8 C42.122D6 C42.232D6 D12:10Q8 C42.131D6 C42.132D6 C42.133D6 C42.134D6 C42.135D6 C42.136D6 C2xC4xC3:D4 C24.83D6
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | ··· | 6G | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | C4oD4 | C4oD12 |
kernel | C2xC4oD12 | C2xDic6 | S3xC2xC4 | C2xD12 | C4oD12 | C2xC3:D4 | C22xC12 | C22xC4 | C2xC4 | C23 | C6 | C2 |
# reps | 1 | 1 | 2 | 1 | 8 | 2 | 1 | 1 | 6 | 1 | 4 | 8 |
Matrix representation of C2xC4oD12 ►in GL3(F13) generated by
12 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 8 | 0 |
0 | 0 | 8 |
1 | 0 | 0 |
0 | 7 | 10 |
0 | 3 | 10 |
1 | 0 | 0 |
0 | 7 | 10 |
0 | 3 | 6 |
G:=sub<GL(3,GF(13))| [12,0,0,0,1,0,0,0,1],[1,0,0,0,8,0,0,0,8],[1,0,0,0,7,3,0,10,10],[1,0,0,0,7,3,0,10,6] >;
C2xC4oD12 in GAP, Magma, Sage, TeX
C_2\times C_4\circ D_{12}
% in TeX
G:=Group("C2xC4oD12");
// GroupNames label
G:=SmallGroup(96,208);
// by ID
G=gap.SmallGroup(96,208);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,86,579,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=d^2=1,c^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^5>;
// generators/relations