Copied to
clipboard

G = C2xC8:D6order 192 = 26·3

Direct product of C2 and C8:D6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xC8:D6, C24:2C23, D12:5C23, D24:9C22, M4(2):17D6, C12.58C24, Dic6:5C23, C23.57D12, (C2xC8):4D6, C8:2(C22xS3), (C2xD24):14C2, C6:1(C8:C22), (C2xC24):7C22, C4.48(C2xD12), (C2xC4).57D12, C24:C2:8C22, (C2xC12).203D4, C12.238(C2xD4), (C6xM4(2)):3C2, (C2xM4(2)):3S3, C4.55(S3xC23), C6.25(C22xD4), C4oD12:18C22, (C22xD12):17C2, (C2xD12):49C22, (C22xC4).281D6, C22.73(C2xD12), (C22xC6).118D4, C2.27(C22xD12), (C2xC12).511C23, (C2xDic6):57C22, (C3xM4(2)):19C22, (C22xC12).266C22, C3:1(C2xC8:C22), (C2xC24:C2):4C2, (C2xC6).62(C2xD4), (C2xC4oD12):26C2, (C2xC4).223(C22xS3), SmallGroup(192,1305)

Series: Derived Chief Lower central Upper central

C1C12 — C2xC8:D6
C1C3C6C12D12C2xD12C22xD12 — C2xC8:D6
C3C6C12 — C2xC8:D6
C1C22C22xC4C2xM4(2)

Generators and relations for C2xC8:D6
 G = < a,b,c,d | a2=b8=c6=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >

Subgroups: 984 in 298 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, S3, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC6, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, C24, Dic6, Dic6, C4xS3, D12, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C24:C2, D24, C2xC24, C3xM4(2), C2xDic6, S3xC2xC4, C2xD12, C2xD12, C2xD12, C4oD12, C4oD12, C2xC3:D4, C22xC12, S3xC23, C2xC8:C22, C2xC24:C2, C2xD24, C8:D6, C6xM4(2), C22xD12, C2xC4oD12, C2xC8:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, D12, C22xS3, C8:C22, C22xD4, C2xD12, S3xC23, C2xC8:C22, C8:D6, C22xD12, C2xC8:D6

Smallest permutation representation of C2xC8:D6
On 48 points
Generators in S48
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 25 15 35 42)(2 18 26 12 36 47)(3 23 27 9 37 44)(4 20 28 14 38 41)(5 17 29 11 39 46)(6 22 30 16 40 43)(7 19 31 13 33 48)(8 24 32 10 34 45)
(1 42)(2 41)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 32)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 40)

G:=sub<Sym(48)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,25,15,35,42)(2,18,26,12,36,47)(3,23,27,9,37,44)(4,20,28,14,38,41)(5,17,29,11,39,46)(6,22,30,16,40,43)(7,19,31,13,33,48)(8,24,32,10,34,45), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,40)>;

G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,25,15,35,42)(2,18,26,12,36,47)(3,23,27,9,37,44)(4,20,28,14,38,41)(5,17,29,11,39,46)(6,22,30,16,40,43)(7,19,31,13,33,48)(8,24,32,10,34,45), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,40) );

G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,25,15,35,42),(2,18,26,12,36,47),(3,23,27,9,37,44),(4,20,28,14,38,41),(5,17,29,11,39,46),(6,22,30,16,40,43),(7,19,31,13,33,48),(8,24,32,10,34,45)], [(1,42),(2,41),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,32),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,40)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F···2K 3 4A4B4C4D4E4F6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order1222222···2344444466666888812121212121224···24
size11112212···122222212122224444442222444···4

42 irreducible representations

dim11111112222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2S3D4D4D6D6D6D12D12C8:C22C8:D6
kernelC2xC8:D6C2xC24:C2C2xD24C8:D6C6xM4(2)C22xD12C2xC4oD12C2xM4(2)C2xC12C22xC6C2xC8M4(2)C22xC4C2xC4C23C6C2
# reps12281111312416224

Matrix representation of C2xC8:D6 in GL6(F73)

7200000
0720000
001000
000100
000010
000001
,
7200000
0720000
000010
000001
00661400
0059700
,
010000
72720000
0072100
0072000
0000172
000010
,
0720000
7200000
001000
0017200
0000759
00006666

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,7,66,0,0,0,0,59,66] >;

C2xC8:D6 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes D_6
% in TeX

G:=Group("C2xC8:D6");
// GroupNames label

G:=SmallGroup(192,1305);
// by ID

G=gap.SmallGroup(192,1305);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,675,297,80,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^6=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<