Extensions 1→N→G→Q→1 with N=Dic3 and Q=SD16

Direct product G=N×Q with N=Dic3 and Q=SD16
dρLabelID
Dic3×SD1696Dic3xSD16192,720

Semidirect products G=N:Q with N=Dic3 and Q=SD16
extensionφ:Q→Out NdρLabelID
Dic31SD16 = C2415D4φ: SD16/C8C2 ⊆ Out Dic396Dic3:1SD16192,734
Dic32SD16 = Dic3⋊SD16φ: SD16/D4C2 ⊆ Out Dic396Dic3:2SD16192,377
Dic33SD16 = Dic33SD16φ: SD16/D4C2 ⊆ Out Dic396Dic3:3SD16192,721
Dic34SD16 = Dic62D4φ: SD16/Q8C2 ⊆ Out Dic396Dic3:4SD16192,321
Dic35SD16 = Dic35SD16φ: SD16/Q8C2 ⊆ Out Dic396Dic3:5SD16192,722
Dic36SD16 = Dic36SD16φ: trivial image96Dic3:6SD16192,317
Dic37SD16 = Dic37SD16φ: trivial image96Dic3:7SD16192,347
Dic38SD16 = Dic38SD16φ: trivial image96Dic3:8SD16192,411

Non-split extensions G=N.Q with N=Dic3 and Q=SD16
extensionφ:Q→Out NdρLabelID
Dic3.1SD16 = Dic3.SD16φ: SD16/C8C2 ⊆ Out Dic396Dic3.1SD16192,319
Dic3.2SD16 = Dic3.1Q16φ: SD16/C8C2 ⊆ Out Dic3192Dic3.2SD16192,351
Dic3.3SD16 = C245Q8φ: SD16/C8C2 ⊆ Out Dic3192Dic3.3SD16192,414
Dic3.4SD16 = D4⋊Dic6φ: SD16/D4C2 ⊆ Out Dic396Dic3.4SD16192,320
Dic3.5SD16 = D12⋊Q8φ: SD16/D4C2 ⊆ Out Dic396Dic3.5SD16192,429
Dic3.6SD16 = Q82Dic6φ: SD16/Q8C2 ⊆ Out Dic3192Dic3.6SD16192,350
Dic3.7SD16 = Dic6⋊Q8φ: SD16/Q8C2 ⊆ Out Dic3192Dic3.7SD16192,413

׿
×
𝔽