Copied to
clipboard

G = Dic37SD16order 192 = 26·3

2nd semidirect product of Dic3 and SD16 acting through Inn(Dic3)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic37SD16, Q82(C4×S3), C33(C4×SD16), C6.34(C4×D4), C4⋊C4.142D6, Q82S31C4, (Q8×Dic3)⋊1C2, D12.2(C2×C4), (C2×C8).204D6, C2.3(S3×SD16), Q8⋊C421S3, (C8×Dic3)⋊21C2, C6.66(C4○D8), C12.9(C22×C4), (C2×Q8).120D6, C12.Q89C2, C6.26(C2×SD16), C2.D24.9C2, C22.73(S3×D4), Dic35D4.1C2, (C6×Q8).11C22, C12.154(C4○D4), C2.1(D24⋊C2), C4.51(D42S3), (C2×C24).232C22, (C2×C12).228C23, (C2×Dic3).202D4, (C2×D12).56C22, C4⋊Dic3.78C22, C2.18(Dic34D4), (C4×Dic3).224C22, C4.9(S3×C2×C4), C3⋊C813(C2×C4), (C3×Q8)⋊1(C2×C4), (C2×C6).241(C2×D4), (C3×Q8⋊C4)⋊19C2, (C3×C4⋊C4).29C22, (C2×C3⋊C8).214C22, (C2×Q82S3).1C2, (C2×C4).335(C22×S3), SmallGroup(192,347)

Series: Derived Chief Lower central Upper central

C1C12 — Dic37SD16
C1C3C6C12C2×C12C4×Dic3Dic35D4 — Dic37SD16
C3C6C12 — Dic37SD16
C1C22C2×C4Q8⋊C4

Generators and relations for Dic37SD16
 G = < a,b,c,d | a6=c8=d2=1, b2=a3, bab-1=cac-1=dad=a-1, bc=cb, bd=db, dcd=c3 >

Subgroups: 344 in 122 conjugacy classes, 51 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×S3, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C2×C3⋊C8, C4×Dic3, C4×Dic3, C4⋊Dic3, C4⋊Dic3, D6⋊C4, Q82S3, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C6×Q8, C4×SD16, C12.Q8, C8×Dic3, C2.D24, C3×Q8⋊C4, Dic35D4, C2×Q82S3, Q8×Dic3, Dic37SD16
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, SD16, C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, C2×SD16, C4○D8, S3×C2×C4, S3×D4, D42S3, C4×SD16, Dic34D4, S3×SD16, D24⋊C2, Dic37SD16

Smallest permutation representation of Dic37SD16
On 96 points
Generators in S96
(1 78 42 20 62 66)(2 67 63 21 43 79)(3 80 44 22 64 68)(4 69 57 23 45 73)(5 74 46 24 58 70)(6 71 59 17 47 75)(7 76 48 18 60 72)(8 65 61 19 41 77)(9 33 90 53 81 27)(10 28 82 54 91 34)(11 35 92 55 83 29)(12 30 84 56 93 36)(13 37 94 49 85 31)(14 32 86 50 95 38)(15 39 96 51 87 25)(16 26 88 52 89 40)
(1 10 20 54)(2 11 21 55)(3 12 22 56)(4 13 23 49)(5 14 24 50)(6 15 17 51)(7 16 18 52)(8 9 19 53)(25 47 96 71)(26 48 89 72)(27 41 90 65)(28 42 91 66)(29 43 92 67)(30 44 93 68)(31 45 94 69)(32 46 95 70)(33 61 81 77)(34 62 82 78)(35 63 83 79)(36 64 84 80)(37 57 85 73)(38 58 86 74)(39 59 87 75)(40 60 88 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 5)(2 8)(4 6)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)(25 37)(26 40)(27 35)(28 38)(29 33)(30 36)(31 39)(32 34)(41 63)(42 58)(43 61)(44 64)(45 59)(46 62)(47 57)(48 60)(49 51)(50 54)(53 55)(65 79)(66 74)(67 77)(68 80)(69 75)(70 78)(71 73)(72 76)(81 92)(82 95)(83 90)(84 93)(85 96)(86 91)(87 94)(88 89)

G:=sub<Sym(96)| (1,78,42,20,62,66)(2,67,63,21,43,79)(3,80,44,22,64,68)(4,69,57,23,45,73)(5,74,46,24,58,70)(6,71,59,17,47,75)(7,76,48,18,60,72)(8,65,61,19,41,77)(9,33,90,53,81,27)(10,28,82,54,91,34)(11,35,92,55,83,29)(12,30,84,56,93,36)(13,37,94,49,85,31)(14,32,86,50,95,38)(15,39,96,51,87,25)(16,26,88,52,89,40), (1,10,20,54)(2,11,21,55)(3,12,22,56)(4,13,23,49)(5,14,24,50)(6,15,17,51)(7,16,18,52)(8,9,19,53)(25,47,96,71)(26,48,89,72)(27,41,90,65)(28,42,91,66)(29,43,92,67)(30,44,93,68)(31,45,94,69)(32,46,95,70)(33,61,81,77)(34,62,82,78)(35,63,83,79)(36,64,84,80)(37,57,85,73)(38,58,86,74)(39,59,87,75)(40,60,88,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,5)(2,8)(4,6)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34)(41,63)(42,58)(43,61)(44,64)(45,59)(46,62)(47,57)(48,60)(49,51)(50,54)(53,55)(65,79)(66,74)(67,77)(68,80)(69,75)(70,78)(71,73)(72,76)(81,92)(82,95)(83,90)(84,93)(85,96)(86,91)(87,94)(88,89)>;

G:=Group( (1,78,42,20,62,66)(2,67,63,21,43,79)(3,80,44,22,64,68)(4,69,57,23,45,73)(5,74,46,24,58,70)(6,71,59,17,47,75)(7,76,48,18,60,72)(8,65,61,19,41,77)(9,33,90,53,81,27)(10,28,82,54,91,34)(11,35,92,55,83,29)(12,30,84,56,93,36)(13,37,94,49,85,31)(14,32,86,50,95,38)(15,39,96,51,87,25)(16,26,88,52,89,40), (1,10,20,54)(2,11,21,55)(3,12,22,56)(4,13,23,49)(5,14,24,50)(6,15,17,51)(7,16,18,52)(8,9,19,53)(25,47,96,71)(26,48,89,72)(27,41,90,65)(28,42,91,66)(29,43,92,67)(30,44,93,68)(31,45,94,69)(32,46,95,70)(33,61,81,77)(34,62,82,78)(35,63,83,79)(36,64,84,80)(37,57,85,73)(38,58,86,74)(39,59,87,75)(40,60,88,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,5)(2,8)(4,6)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34)(41,63)(42,58)(43,61)(44,64)(45,59)(46,62)(47,57)(48,60)(49,51)(50,54)(53,55)(65,79)(66,74)(67,77)(68,80)(69,75)(70,78)(71,73)(72,76)(81,92)(82,95)(83,90)(84,93)(85,96)(86,91)(87,94)(88,89) );

G=PermutationGroup([[(1,78,42,20,62,66),(2,67,63,21,43,79),(3,80,44,22,64,68),(4,69,57,23,45,73),(5,74,46,24,58,70),(6,71,59,17,47,75),(7,76,48,18,60,72),(8,65,61,19,41,77),(9,33,90,53,81,27),(10,28,82,54,91,34),(11,35,92,55,83,29),(12,30,84,56,93,36),(13,37,94,49,85,31),(14,32,86,50,95,38),(15,39,96,51,87,25),(16,26,88,52,89,40)], [(1,10,20,54),(2,11,21,55),(3,12,22,56),(4,13,23,49),(5,14,24,50),(6,15,17,51),(7,16,18,52),(8,9,19,53),(25,47,96,71),(26,48,89,72),(27,41,90,65),(28,42,91,66),(29,43,92,67),(30,44,93,68),(31,45,94,69),(32,46,95,70),(33,61,81,77),(34,62,82,78),(35,63,83,79),(36,64,84,80),(37,57,85,73),(38,58,86,74),(39,59,87,75),(40,60,88,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,5),(2,8),(4,6),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24),(25,37),(26,40),(27,35),(28,38),(29,33),(30,36),(31,39),(32,34),(41,63),(42,58),(43,61),(44,64),(45,59),(46,62),(47,57),(48,60),(49,51),(50,54),(53,55),(65,79),(66,74),(67,77),(68,80),(69,75),(70,78),(71,73),(72,76),(81,92),(82,95),(83,90),(84,93),(85,96),(86,91),(87,94),(88,89)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222223444444444444446668888888812121212121224242424
size1111121222233334444661212222222266664488884444

42 irreducible representations

dim1111111112222222224444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2C4S3D4D6D6D6SD16C4○D4C4×S3C4○D8D42S3S3×D4S3×SD16D24⋊C2
kernelDic37SD16C12.Q8C8×Dic3C2.D24C3×Q8⋊C4Dic35D4C2×Q82S3Q8×Dic3Q82S3Q8⋊C4C2×Dic3C4⋊C4C2×C8C2×Q8Dic3C12Q8C6C4C22C2C2
# reps1111111181211142441122

Matrix representation of Dic37SD16 in GL6(𝔽73)

100000
010000
0072000
0007200
0000721
0000720
,
100000
010000
0027000
0002700
0000072
0000720
,
6760000
67670000
000200
0036000
000001
000010
,
7200000
010000
001000
0007200
000001
000010

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[67,67,0,0,0,0,6,67,0,0,0,0,0,0,0,36,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

Dic37SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_7{\rm SD}_{16}
% in TeX

G:=Group("Dic3:7SD16");
// GroupNames label

G:=SmallGroup(192,347);
// by ID

G=gap.SmallGroup(192,347);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,120,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^8=d^2=1,b^2=a^3,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽