Copied to
clipboard

G = D4⋊Dic6order 192 = 26·3

2nd semidirect product of D4 and Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D42Dic6, Dic3.4SD16, C12⋊Q83C2, C4⋊C4.3D6, (C3×D4)⋊2Q8, C12.2(C2×Q8), Dic3⋊C89C2, C8⋊Dic310C2, C31(D42Q8), (C2×C8).112D6, C4.2(C2×Dic6), C2.9(S3×SD16), (C2×D4).127D6, D4⋊C4.5S3, C2.8(D8⋊S3), C12.Q82C2, (D4×Dic3).4C2, C6.20(C2×SD16), C6.8(C22⋊Q8), C6.25(C8⋊C22), D4⋊Dic3.2C2, (C6×D4).22C22, C22.163(S3×D4), C12.146(C4○D4), C4.75(D42S3), (C2×C12).201C23, (C2×C24).123C22, (C2×Dic3).135D4, C4⋊Dic3.61C22, (C4×Dic3).5C22, C2.13(Dic3.D4), (C2×C3⋊C8).7C22, (C2×C6).214(C2×D4), (C3×C4⋊C4).6C22, (C3×D4⋊C4).5C2, (C2×C4).308(C22×S3), SmallGroup(192,320)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D4⋊Dic6
C1C3C6C2×C6C2×C12C4×Dic3D4×Dic3 — D4⋊Dic6
C3C6C2×C12 — D4⋊Dic6
C1C22C2×C4D4⋊C4

Generators and relations for D4⋊Dic6
 G = < a,b,c,d | a4=b2=c12=1, d2=c6, bab=cac-1=a-1, ad=da, cbc-1=a-1b, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 312 in 108 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, Dic3, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C4×D4, C4⋊Q8, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C4⋊C4, C2×C24, C2×Dic6, C22×Dic3, C6×D4, D42Q8, C12.Q8, Dic3⋊C8, C8⋊Dic3, D4⋊Dic3, C3×D4⋊C4, C12⋊Q8, D4×Dic3, D4⋊Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, SD16, C2×D4, C2×Q8, C4○D4, Dic6, C22×S3, C22⋊Q8, C2×SD16, C8⋊C22, C2×Dic6, S3×D4, D42S3, D42Q8, Dic3.D4, D8⋊S3, S3×SD16, D4⋊Dic6

Smallest permutation representation of D4⋊Dic6
On 96 points
Generators in S96
(1 80 71 14)(2 15 72 81)(3 82 61 16)(4 17 62 83)(5 84 63 18)(6 19 64 73)(7 74 65 20)(8 21 66 75)(9 76 67 22)(10 23 68 77)(11 78 69 24)(12 13 70 79)(25 53 95 44)(26 45 96 54)(27 55 85 46)(28 47 86 56)(29 57 87 48)(30 37 88 58)(31 59 89 38)(32 39 90 60)(33 49 91 40)(34 41 92 50)(35 51 93 42)(36 43 94 52)
(1 74)(2 66)(3 76)(4 68)(5 78)(6 70)(7 80)(8 72)(9 82)(10 62)(11 84)(12 64)(13 19)(14 65)(15 21)(16 67)(17 23)(18 69)(20 71)(22 61)(24 63)(25 31)(26 60)(27 33)(28 50)(29 35)(30 52)(32 54)(34 56)(36 58)(37 94)(38 53)(39 96)(40 55)(41 86)(42 57)(43 88)(44 59)(45 90)(46 49)(47 92)(48 51)(73 79)(75 81)(77 83)(85 91)(87 93)(89 95)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 34 7 28)(2 33 8 27)(3 32 9 26)(4 31 10 25)(5 30 11 36)(6 29 12 35)(13 51 19 57)(14 50 20 56)(15 49 21 55)(16 60 22 54)(17 59 23 53)(18 58 24 52)(37 78 43 84)(38 77 44 83)(39 76 45 82)(40 75 46 81)(41 74 47 80)(42 73 48 79)(61 90 67 96)(62 89 68 95)(63 88 69 94)(64 87 70 93)(65 86 71 92)(66 85 72 91)

G:=sub<Sym(96)| (1,80,71,14)(2,15,72,81)(3,82,61,16)(4,17,62,83)(5,84,63,18)(6,19,64,73)(7,74,65,20)(8,21,66,75)(9,76,67,22)(10,23,68,77)(11,78,69,24)(12,13,70,79)(25,53,95,44)(26,45,96,54)(27,55,85,46)(28,47,86,56)(29,57,87,48)(30,37,88,58)(31,59,89,38)(32,39,90,60)(33,49,91,40)(34,41,92,50)(35,51,93,42)(36,43,94,52), (1,74)(2,66)(3,76)(4,68)(5,78)(6,70)(7,80)(8,72)(9,82)(10,62)(11,84)(12,64)(13,19)(14,65)(15,21)(16,67)(17,23)(18,69)(20,71)(22,61)(24,63)(25,31)(26,60)(27,33)(28,50)(29,35)(30,52)(32,54)(34,56)(36,58)(37,94)(38,53)(39,96)(40,55)(41,86)(42,57)(43,88)(44,59)(45,90)(46,49)(47,92)(48,51)(73,79)(75,81)(77,83)(85,91)(87,93)(89,95), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,34,7,28)(2,33,8,27)(3,32,9,26)(4,31,10,25)(5,30,11,36)(6,29,12,35)(13,51,19,57)(14,50,20,56)(15,49,21,55)(16,60,22,54)(17,59,23,53)(18,58,24,52)(37,78,43,84)(38,77,44,83)(39,76,45,82)(40,75,46,81)(41,74,47,80)(42,73,48,79)(61,90,67,96)(62,89,68,95)(63,88,69,94)(64,87,70,93)(65,86,71,92)(66,85,72,91)>;

G:=Group( (1,80,71,14)(2,15,72,81)(3,82,61,16)(4,17,62,83)(5,84,63,18)(6,19,64,73)(7,74,65,20)(8,21,66,75)(9,76,67,22)(10,23,68,77)(11,78,69,24)(12,13,70,79)(25,53,95,44)(26,45,96,54)(27,55,85,46)(28,47,86,56)(29,57,87,48)(30,37,88,58)(31,59,89,38)(32,39,90,60)(33,49,91,40)(34,41,92,50)(35,51,93,42)(36,43,94,52), (1,74)(2,66)(3,76)(4,68)(5,78)(6,70)(7,80)(8,72)(9,82)(10,62)(11,84)(12,64)(13,19)(14,65)(15,21)(16,67)(17,23)(18,69)(20,71)(22,61)(24,63)(25,31)(26,60)(27,33)(28,50)(29,35)(30,52)(32,54)(34,56)(36,58)(37,94)(38,53)(39,96)(40,55)(41,86)(42,57)(43,88)(44,59)(45,90)(46,49)(47,92)(48,51)(73,79)(75,81)(77,83)(85,91)(87,93)(89,95), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,34,7,28)(2,33,8,27)(3,32,9,26)(4,31,10,25)(5,30,11,36)(6,29,12,35)(13,51,19,57)(14,50,20,56)(15,49,21,55)(16,60,22,54)(17,59,23,53)(18,58,24,52)(37,78,43,84)(38,77,44,83)(39,76,45,82)(40,75,46,81)(41,74,47,80)(42,73,48,79)(61,90,67,96)(62,89,68,95)(63,88,69,94)(64,87,70,93)(65,86,71,92)(66,85,72,91) );

G=PermutationGroup([[(1,80,71,14),(2,15,72,81),(3,82,61,16),(4,17,62,83),(5,84,63,18),(6,19,64,73),(7,74,65,20),(8,21,66,75),(9,76,67,22),(10,23,68,77),(11,78,69,24),(12,13,70,79),(25,53,95,44),(26,45,96,54),(27,55,85,46),(28,47,86,56),(29,57,87,48),(30,37,88,58),(31,59,89,38),(32,39,90,60),(33,49,91,40),(34,41,92,50),(35,51,93,42),(36,43,94,52)], [(1,74),(2,66),(3,76),(4,68),(5,78),(6,70),(7,80),(8,72),(9,82),(10,62),(11,84),(12,64),(13,19),(14,65),(15,21),(16,67),(17,23),(18,69),(20,71),(22,61),(24,63),(25,31),(26,60),(27,33),(28,50),(29,35),(30,52),(32,54),(34,56),(36,58),(37,94),(38,53),(39,96),(40,55),(41,86),(42,57),(43,88),(44,59),(45,90),(46,49),(47,92),(48,51),(73,79),(75,81),(77,83),(85,91),(87,93),(89,95)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,34,7,28),(2,33,8,27),(3,32,9,26),(4,31,10,25),(5,30,11,36),(6,29,12,35),(13,51,19,57),(14,50,20,56),(15,49,21,55),(16,60,22,54),(17,59,23,53),(18,58,24,52),(37,78,43,84),(38,77,44,83),(39,76,45,82),(40,75,46,81),(41,74,47,80),(42,73,48,79),(61,90,67,96),(62,89,68,95),(63,88,69,94),(64,87,70,93),(65,86,71,92),(66,85,72,91)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444446666688881212121224242424
size111144222668121212242228844121244884444

33 irreducible representations

dim1111111122222222244444
type++++++++++-+++-+-+
imageC1C2C2C2C2C2C2C2S3D4Q8D6D6D6SD16C4○D4Dic6C8⋊C22D42S3S3×D4D8⋊S3S3×SD16
kernelD4⋊Dic6C12.Q8Dic3⋊C8C8⋊Dic3D4⋊Dic3C3×D4⋊C4C12⋊Q8D4×Dic3D4⋊C4C2×Dic3C3×D4C4⋊C4C2×C8C2×D4Dic3C12D4C6C4C22C2C2
# reps1111111112211142411122

Matrix representation of D4⋊Dic6 in GL6(𝔽73)

010000
7200000
001000
000100
000010
000001
,
010000
100000
001000
000100
0000720
0000072
,
660000
6670000
000100
00727200
000001
0000720
,
0720000
100000
0045300
00312800
00005720
00002016

G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[6,6,0,0,0,0,6,67,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,45,31,0,0,0,0,3,28,0,0,0,0,0,0,57,20,0,0,0,0,20,16] >;

D4⋊Dic6 in GAP, Magma, Sage, TeX

D_4\rtimes {\rm Dic}_6
% in TeX

G:=Group("D4:Dic6");
// GroupNames label

G:=SmallGroup(192,320);
// by ID

G=gap.SmallGroup(192,320);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,254,219,226,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=1,d^2=c^6,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽