Extensions 1→N→G→Q→1 with N=Dic3⋊D4 and Q=C2

Direct product G=N×Q with N=Dic3⋊D4 and Q=C2
dρLabelID
C2×Dic3⋊D496C2xDic3:D4192,1048

Semidirect products G=N:Q with N=Dic3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3⋊D41C2 = C24.38D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:1C2192,1049
Dic3⋊D42C2 = C24.41D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:2C2192,1053
Dic3⋊D43C2 = C42.95D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:3C2192,1089
Dic3⋊D44C2 = C42.97D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:4C2192,1091
Dic3⋊D45C2 = C42.100D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:5C2192,1094
Dic3⋊D46C2 = C42.104D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:6C2192,1099
Dic3⋊D47C2 = D1223D4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:7C2192,1109
Dic3⋊D48C2 = Dic624D4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:8C2192,1112
Dic3⋊D49C2 = C42.113D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:9C2192,1117
Dic3⋊D410C2 = C4219D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:10C2192,1119
Dic3⋊D411C2 = C42.116D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:11C2192,1121
Dic3⋊D412C2 = C247D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:12C2192,1148
Dic3⋊D413C2 = C248D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:13C2192,1149
Dic3⋊D414C2 = C24.45D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:14C2192,1151
Dic3⋊D415C2 = C24.47D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:15C2192,1154
Dic3⋊D416C2 = C6.322+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:16C2192,1156
Dic3⋊D417C2 = Dic620D4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:17C2192,1158
Dic3⋊D418C2 = S3×C4⋊D4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:18C2192,1163
Dic3⋊D419C2 = C6.722- 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:19C2192,1167
Dic3⋊D420C2 = D1219D4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:20C2192,1168
Dic3⋊D421C2 = C6.402+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:21C2192,1169
Dic3⋊D422C2 = C6.442+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:22C2192,1174
Dic3⋊D423C2 = C6.482+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:23C2192,1179
Dic3⋊D424C2 = C6.172- 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:24C2192,1188
Dic3⋊D425C2 = D1222D4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:25C2192,1190
Dic3⋊D426C2 = Dic622D4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:26C2192,1192
Dic3⋊D427C2 = C6.592+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:27C2192,1206
Dic3⋊D428C2 = C6.1202+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:28C2192,1212
Dic3⋊D429C2 = C6.1212+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:29C2192,1213
Dic3⋊D430C2 = C6.822- 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:30C2192,1214
Dic3⋊D431C2 = C4⋊C428D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:31C2192,1215
Dic3⋊D432C2 = C6.612+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:32C2192,1216
Dic3⋊D433C2 = C6.642+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:33C2192,1220
Dic3⋊D434C2 = C6.662+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:34C2192,1222
Dic3⋊D435C2 = C6.682+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:35C2192,1225
Dic3⋊D436C2 = C6.692+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:36C2192,1226
Dic3⋊D437C2 = C42.233D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:37C2192,1227
Dic3⋊D438C2 = C42.138D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:38C2192,1229
Dic3⋊D439C2 = C4220D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:39C2192,1233
Dic3⋊D440C2 = D1210D4φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:40C2192,1235
Dic3⋊D441C2 = Dic610D4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:41C2192,1236
Dic3⋊D442C2 = C4222D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:42C2192,1237
Dic3⋊D443C2 = C42.145D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:43C2192,1243
Dic3⋊D444C2 = C4225D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:44C2192,1263
Dic3⋊D445C2 = C42.163D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4:45C2192,1268
Dic3⋊D446C2 = C4227D6φ: C2/C1C2 ⊆ Out Dic3⋊D448Dic3:D4:46C2192,1270
Dic3⋊D447C2 = C4214D6φ: trivial image48Dic3:D4:47C2192,1106
Dic3⋊D448C2 = C42.228D6φ: trivial image96Dic3:D4:48C2192,1107

Non-split extensions G=N.Q with N=Dic3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3⋊D4.1C2 = C6.202- 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4.1C2192,1197
Dic3⋊D4.2C2 = C6.222- 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4.2C2192,1199
Dic3⋊D4.3C2 = C42.189D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4.3C2192,1265
Dic3⋊D4.4C2 = C42.161D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4.4C2192,1266
Dic3⋊D4.5C2 = C42.164D6φ: C2/C1C2 ⊆ Out Dic3⋊D496Dic3:D4.5C2192,1269
Dic3⋊D4.6C2 = C42.93D6φ: trivial image96Dic3:D4.6C2192,1087

׿
×
𝔽