metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C6.482+ 1+4, C4:C4:9D6, (C2xD4):11D6, C4:D4:23S3, C22:C4:13D6, (C22xC4):24D6, C23:2D6:14C2, D6:3D4:28C2, Dic3:D4:23C2, D6:D4:14C2, C12:7D4:45C2, C12:3D4:20C2, D6:C4:32C22, (C6xD4):16C22, D6.D4:14C2, C2.32(D4oD12), (C2xC12).46C23, (C2xC6).164C24, C4:Dic3:13C22, C23.14D6:18C2, C2.50(D4:6D6), Dic3:C4:35C22, (C22xC12):31C22, (C4xDic3):26C22, C23.8D6:21C2, C3:2(C22.54C24), (C2xD12).146C22, C23.21D6:14C2, C6.D4:27C22, C23.28D6:12C2, (S3xC23).51C22, (C22xS3).71C23, C23.124(C22xS3), C22.185(S3xC23), (C22xC6).192C23, (C2xDic3).81C23, (C22xDic3):23C22, (S3xC2xC4):16C22, C4:C4:S3:15C2, (C3xC4:D4):26C2, (C3xC4:C4):16C22, (C2xC3:D4):17C22, (C2xC4).42(C22xS3), (C3xC22:C4):18C22, SmallGroup(192,1179)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6.482+ 1+4
G = < a,b,c,d,e | a6=b4=c2=e2=1, d2=a3b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, dbd-1=a3b, be=eb, dcd-1=ece=a3c, ede=a3b2d >
Subgroups: 800 in 252 conjugacy classes, 91 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, D6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C22wrC2, C4:D4, C4:D4, C22.D4, C42:2C2, C4:1D4, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xD12, C22xDic3, C2xC3:D4, C22xC12, C6xD4, S3xC23, C22.54C24, C23.8D6, D6:D4, Dic3:D4, C23.21D6, D6.D4, C4:C4:S3, C23.28D6, C12:7D4, C23:2D6, D6:3D4, C23.14D6, C12:3D4, C3xC4:D4, C6.482+ 1+4
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2+ 1+4, S3xC23, C22.54C24, D4:6D6, D4oD12, C6.482+ 1+4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 28 7 34)(2 29 8 35)(3 30 9 36)(4 25 10 31)(5 26 11 32)(6 27 12 33)(13 37 19 43)(14 38 20 44)(15 39 21 45)(16 40 22 46)(17 41 23 47)(18 42 24 48)
(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 46)(38 47)(39 48)(40 43)(41 44)(42 45)
(1 22 10 13)(2 21 11 18)(3 20 12 17)(4 19 7 16)(5 24 8 15)(6 23 9 14)(25 46 34 37)(26 45 35 42)(27 44 36 41)(28 43 31 40)(29 48 32 39)(30 47 33 38)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,37,19,43)(14,38,20,44)(15,39,21,45)(16,40,22,46)(17,41,23,47)(18,42,24,48), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,22,10,13)(2,21,11,18)(3,20,12,17)(4,19,7,16)(5,24,8,15)(6,23,9,14)(25,46,34,37)(26,45,35,42)(27,44,36,41)(28,43,31,40)(29,48,32,39)(30,47,33,38), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,37,19,43)(14,38,20,44)(15,39,21,45)(16,40,22,46)(17,41,23,47)(18,42,24,48), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,22,10,13)(2,21,11,18)(3,20,12,17)(4,19,7,16)(5,24,8,15)(6,23,9,14)(25,46,34,37)(26,45,35,42)(27,44,36,41)(28,43,31,40)(29,48,32,39)(30,47,33,38), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,28,7,34),(2,29,8,35),(3,30,9,36),(4,25,10,31),(5,26,11,32),(6,27,12,33),(13,37,19,43),(14,38,20,44),(15,39,21,45),(16,40,22,46),(17,41,23,47),(18,42,24,48)], [(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,46),(38,47),(39,48),(40,43),(41,44),(42,45)], [(1,22,10,13),(2,21,11,18),(3,20,12,17),(4,19,7,16),(5,24,8,15),(6,23,9,14),(25,46,34,37),(26,45,35,42),(27,44,36,41),(28,43,31,40),(29,48,32,39),(30,47,33,38)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4I | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 12 | 12 | 12 | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | D6 | 2+ 1+4 | D4:6D6 | D4oD12 |
kernel | C6.482+ 1+4 | C23.8D6 | D6:D4 | Dic3:D4 | C23.21D6 | D6.D4 | C4:C4:S3 | C23.28D6 | C12:7D4 | C23:2D6 | D6:3D4 | C23.14D6 | C12:3D4 | C3xC4:D4 | C4:D4 | C22:C4 | C4:C4 | C22xC4 | C2xD4 | C6 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 3 | 4 | 2 |
Matrix representation of C6.482+ 1+4 ►in GL8(F13)
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
12 | 0 | 8 | 8 | 0 | 0 | 0 | 0 |
0 | 12 | 10 | 8 | 0 | 0 | 0 | 0 |
1 | 12 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 9 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 11 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 12 | 0 | 0 | 0 | 0 | 0 |
11 | 12 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 12 | 0 |
0 | 0 | 0 | 0 | 11 | 12 | 0 | 12 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 5 | 5 |
0 | 0 | 0 | 0 | 12 | 12 | 5 | 3 |
0 | 0 | 0 | 0 | 11 | 12 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 1 | 12 | 0 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 5 | 5 |
0 | 0 | 0 | 0 | 0 | 1 | 3 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1],[12,0,1,2,0,0,0,0,0,12,12,1,0,0,0,0,8,10,1,0,0,0,0,0,8,8,0,1,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,9,11],[1,0,12,11,0,0,0,0,0,1,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,12,11,0,0,0,0,0,1,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[2,2,0,0,0,0,0,0,4,11,0,0,0,0,0,0,0,0,9,11,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,1,12,11,12,0,0,0,0,0,12,12,1,0,0,0,0,5,5,0,12,0,0,0,0,5,3,12,0],[2,9,0,0,0,0,0,0,4,11,0,0,0,0,0,0,0,0,11,9,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,5,3,12,0,0,0,0,0,5,5,0,12] >;
C6.482+ 1+4 in GAP, Magma, Sage, TeX
C_6._{48}2_+^{1+4}
% in TeX
G:=Group("C6.48ES+(2,2)");
// GroupNames label
G:=SmallGroup(192,1179);
// by ID
G=gap.SmallGroup(192,1179);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,1571,570,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^4=c^2=e^2=1,d^2=a^3*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a^3*b,b*e=e*b,d*c*d^-1=e*c*e=a^3*c,e*d*e=a^3*b^2*d>;
// generators/relations