Extensions 1→N→G→Q→1 with N=D4×A4 and Q=C2

Direct product G=N×Q with N=D4×A4 and Q=C2
dρLabelID
C2×D4×A424C2xD4xA4192,1497

Semidirect products G=N:Q with N=D4×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×A4)⋊1C2 = D4⋊S4φ: C2/C1C2 ⊆ Out D4×A4246+(D4xA4):1C2192,974
(D4×A4)⋊2C2 = D4×S4φ: C2/C1C2 ⊆ Out D4×A4126+(D4xA4):2C2192,1472
(D4×A4)⋊3C2 = D42S4φ: C2/C1C2 ⊆ Out D4×A4246(D4xA4):3C2192,1473
(D4×A4)⋊4C2 = A4×D8φ: C2/C1C2 ⊆ Out D4×A4246+(D4xA4):4C2192,1014
(D4×A4)⋊5C2 = A4×C4○D4φ: trivial image246(D4xA4):5C2192,1501

Non-split extensions G=N.Q with N=D4×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×A4).1C2 = A4⋊SD16φ: C2/C1C2 ⊆ Out D4×A4246(D4xA4).1C2192,973
(D4×A4).2C2 = A4×SD16φ: C2/C1C2 ⊆ Out D4×A4246(D4xA4).2C2192,1015

׿
×
𝔽