direct product, metabelian, soluble, monomial
Aliases: A4×D8, D4⋊(C2×A4), C8⋊1(C2×A4), C22⋊(C3×D8), (C22×D8)⋊C3, (C8×A4)⋊3C2, (D4×A4)⋊4C2, (C22×D4)⋊C6, C2.6(D4×A4), (C22×C8)⋊1C6, (C2×A4).14D4, C4.1(C22×A4), C23.23(C3×D4), (C4×A4).17C22, (C22×C4).1(C2×C6), SmallGroup(192,1014)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4×D8
G = < a,b,c,d,e | a2=b2=c3=d8=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 424 in 93 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C8, C2×C4, D4, D4, C23, C23, C12, A4, C2×C6, C2×C8, D8, D8, C22×C4, C2×D4, C24, C24, C3×D4, C2×A4, C2×A4, C22×C8, C2×D8, C22×D4, C3×D8, C4×A4, C22×A4, C22×D8, C8×A4, D4×A4, A4×D8
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, D8, C3×D4, C2×A4, C3×D8, C22×A4, D4×A4, A4×D8
Character table of A4×D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 12 | 12 | 4 | 4 | 2 | 6 | 4 | 4 | 16 | 16 | 16 | 16 | 2 | 2 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | -2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | -2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | complex lifted from C3×D8 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | complex lifted from C3×D8 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | complex lifted from C3×D8 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | complex lifted from C3×D8 |
ρ22 | 3 | 3 | -1 | -1 | -3 | -3 | 1 | 1 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ23 | 3 | 3 | -1 | -1 | -3 | 3 | -1 | 1 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ24 | 3 | 3 | -1 | -1 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ25 | 3 | 3 | -1 | -1 | 3 | -3 | 1 | -1 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ26 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×A4 |
ρ27 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3√2 | 3√2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3√2 | -3√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
(1 5)(2 6)(3 7)(4 8)(17 21)(18 22)(19 23)(20 24)
(1 10 23)(2 11 24)(3 12 17)(4 13 18)(5 14 19)(6 15 20)(7 16 21)(8 9 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 21)(18 20)(22 24)
G:=sub<Sym(24)| (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,10,23)(2,11,24)(3,12,17)(4,13,18)(5,14,19)(6,15,20)(7,16,21)(8,9,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24)>;
G:=Group( (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,10,23)(2,11,24)(3,12,17)(4,13,18)(5,14,19)(6,15,20)(7,16,21)(8,9,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24) );
G=PermutationGroup([[(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)], [(1,5),(2,6),(3,7),(4,8),(17,21),(18,22),(19,23),(20,24)], [(1,10,23),(2,11,24),(3,12,17),(4,13,18),(5,14,19),(6,15,20),(7,16,21),(8,9,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,21),(18,20),(22,24)]])
G:=TransitiveGroup(24,328);
Matrix representation of A4×D8 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 1 |
0 | 0 | 72 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 72 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
72 | 1 | 0 | 0 | 0 |
39 | 33 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 |
39 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,72,72,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,72,72,72,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[72,39,0,0,0,1,33,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[72,39,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4×D8 in GAP, Magma, Sage, TeX
A_4\times D_8
% in TeX
G:=Group("A4xD8");
// GroupNames label
G:=SmallGroup(192,1014);
// by ID
G=gap.SmallGroup(192,1014);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,197,1011,514,80,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export