direct product, metabelian, soluble, monomial
Aliases: D4×A4, C24⋊2C6, C4⋊(C2×A4), (C22×C4)⋊C6, C22⋊(C3×D4), (C22×D4)⋊C3, (C4×A4)⋊3C2, C22⋊2(C2×A4), (C22×A4)⋊1C2, C23.6(C2×C6), C2.2(C22×A4), (C2×A4).7C22, SmallGroup(96,197)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×A4
G = < a,b,c,d,e | a4=b2=c2=d2=e3=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >
Subgroups: 208 in 66 conjugacy classes, 18 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C2×C4, D4, D4, C23, C23, C12, A4, C2×C6, C22×C4, C2×D4, C24, C3×D4, C2×A4, C2×A4, C22×D4, C4×A4, C22×A4, D4×A4
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, C3×D4, C2×A4, C22×A4, D4×A4
Character table of D4×A4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | |
size | 1 | 1 | 2 | 2 | 3 | 3 | 6 | 6 | 4 | 4 | 2 | 6 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ11 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ6 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ65 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ13 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ16 | 3 | 3 | -3 | -3 | -1 | -1 | 1 | 1 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ17 | 3 | 3 | -3 | 3 | -1 | -1 | -1 | 1 | 0 | 0 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ18 | 3 | 3 | 3 | -3 | -1 | -1 | 1 | -1 | 0 | 0 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ19 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 6 | -6 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)
(5 7)(6 8)(9 11)(10 12)
(1 3)(2 4)(9 11)(10 12)
(1 7 11)(2 8 12)(3 5 9)(4 6 10)
G:=sub<Sym(12)| (1,2,3,4)(5,6,7,8)(9,10,11,12), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11), (5,7)(6,8)(9,11)(10,12), (1,3)(2,4)(9,11)(10,12), (1,7,11)(2,8,12)(3,5,9)(4,6,10)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11), (5,7)(6,8)(9,11)(10,12), (1,3)(2,4)(9,11)(10,12), (1,7,11)(2,8,12)(3,5,9)(4,6,10) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)], [(5,7),(6,8),(9,11),(10,12)], [(1,3),(2,4),(9,11),(10,12)], [(1,7,11),(2,8,12),(3,5,9),(4,6,10)]])
G:=TransitiveGroup(12,51);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 6)(2 7)(3 8)(4 5)(9 13)(10 14)(11 15)(12 16)
(1 12)(2 9)(3 10)(4 11)(5 15)(6 16)(7 13)(8 14)
(5 11 15)(6 12 16)(7 9 13)(8 10 14)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,6)(2,7)(3,8)(4,5)(9,13)(10,14)(11,15)(12,16), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14), (5,11,15)(6,12,16)(7,9,13)(8,10,14)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,6)(2,7)(3,8)(4,5)(9,13)(10,14)(11,15)(12,16), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14), (5,11,15)(6,12,16)(7,9,13)(8,10,14) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,6),(2,7),(3,8),(4,5),(9,13),(10,14),(11,15),(12,16)], [(1,12),(2,9),(3,10),(4,11),(5,15),(6,16),(7,13),(8,14)], [(5,11,15),(6,12,16),(7,9,13),(8,10,14)]])
G:=TransitiveGroup(16,179);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 12)(2 11)(3 10)(4 9)(5 16)(6 15)(7 14)(8 13)(17 24)(18 23)(19 22)(20 21)
(5 7)(6 8)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 19 13)(2 20 14)(3 17 15)(4 18 16)(5 9 23)(6 10 24)(7 11 21)(8 12 22)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,24)(18,23)(19,22)(20,21), (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,19,13)(2,20,14)(3,17,15)(4,18,16)(5,9,23)(6,10,24)(7,11,21)(8,12,22)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,24)(18,23)(19,22)(20,21), (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,19,13)(2,20,14)(3,17,15)(4,18,16)(5,9,23)(6,10,24)(7,11,21)(8,12,22) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,12),(2,11),(3,10),(4,9),(5,16),(6,15),(7,14),(8,13),(17,24),(18,23),(19,22),(20,21)], [(5,7),(6,8),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,19,13),(2,20,14),(3,17,15),(4,18,16),(5,9,23),(6,10,24),(7,11,21),(8,12,22)]])
G:=TransitiveGroup(24,160);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 16)(12 15)(17 23)(18 22)(19 21)(20 24)
(1 3)(2 4)(5 7)(6 8)(9 14)(10 15)(11 16)(12 13)(17 23)(18 24)(19 21)(20 22)
(1 8)(2 5)(3 6)(4 7)(9 11)(10 12)(13 15)(14 16)(17 21)(18 22)(19 23)(20 24)
(1 15 21)(2 16 22)(3 13 23)(4 14 24)(5 9 20)(6 10 17)(7 11 18)(8 12 19)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,16)(12,15)(17,23)(18,22)(19,21)(20,24), (1,3)(2,4)(5,7)(6,8)(9,14)(10,15)(11,16)(12,13)(17,23)(18,24)(19,21)(20,22), (1,8)(2,5)(3,6)(4,7)(9,11)(10,12)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24), (1,15,21)(2,16,22)(3,13,23)(4,14,24)(5,9,20)(6,10,17)(7,11,18)(8,12,19)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,16)(12,15)(17,23)(18,22)(19,21)(20,24), (1,3)(2,4)(5,7)(6,8)(9,14)(10,15)(11,16)(12,13)(17,23)(18,24)(19,21)(20,22), (1,8)(2,5)(3,6)(4,7)(9,11)(10,12)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24), (1,15,21)(2,16,22)(3,13,23)(4,14,24)(5,9,20)(6,10,17)(7,11,18)(8,12,19) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,16),(12,15),(17,23),(18,22),(19,21),(20,24)], [(1,3),(2,4),(5,7),(6,8),(9,14),(10,15),(11,16),(12,13),(17,23),(18,24),(19,21),(20,22)], [(1,8),(2,5),(3,6),(4,7),(9,11),(10,12),(13,15),(14,16),(17,21),(18,22),(19,23),(20,24)], [(1,15,21),(2,16,22),(3,13,23),(4,14,24),(5,9,20),(6,10,17),(7,11,18),(8,12,19)]])
G:=TransitiveGroup(24,161);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(5 7)(10 12)(13 15)(18 20)(22 24)
(1 3)(2 4)(5 22)(6 23)(7 24)(8 21)(9 11)(10 12)(13 18)(14 19)(15 20)(16 17)
(1 11)(2 12)(3 9)(4 10)(5 24)(6 21)(7 22)(8 23)(13 15)(14 16)(17 19)(18 20)
(1 17 8)(2 18 5)(3 19 6)(4 20 7)(9 16 23)(10 13 24)(11 14 21)(12 15 22)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24), (1,3)(2,4)(5,22)(6,23)(7,24)(8,21)(9,11)(10,12)(13,18)(14,19)(15,20)(16,17), (1,11)(2,12)(3,9)(4,10)(5,24)(6,21)(7,22)(8,23)(13,15)(14,16)(17,19)(18,20), (1,17,8)(2,18,5)(3,19,6)(4,20,7)(9,16,23)(10,13,24)(11,14,21)(12,15,22)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24), (1,3)(2,4)(5,22)(6,23)(7,24)(8,21)(9,11)(10,12)(13,18)(14,19)(15,20)(16,17), (1,11)(2,12)(3,9)(4,10)(5,24)(6,21)(7,22)(8,23)(13,15)(14,16)(17,19)(18,20), (1,17,8)(2,18,5)(3,19,6)(4,20,7)(9,16,23)(10,13,24)(11,14,21)(12,15,22) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(5,7),(10,12),(13,15),(18,20),(22,24)], [(1,3),(2,4),(5,22),(6,23),(7,24),(8,21),(9,11),(10,12),(13,18),(14,19),(15,20),(16,17)], [(1,11),(2,12),(3,9),(4,10),(5,24),(6,21),(7,22),(8,23),(13,15),(14,16),(17,19),(18,20)], [(1,17,8),(2,18,5),(3,19,6),(4,20,7),(9,16,23),(10,13,24),(11,14,21),(12,15,22)]])
G:=TransitiveGroup(24,162);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 5)(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(12 16)(17 24)(18 23)(19 22)(20 21)
(9 14)(10 15)(11 16)(12 13)(17 21)(18 22)(19 23)(20 24)
(1 6)(2 7)(3 8)(4 5)(17 21)(18 22)(19 23)(20 24)
(1 15 23)(2 16 24)(3 13 21)(4 14 22)(5 9 18)(6 10 19)(7 11 20)(8 12 17)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(12,16)(17,24)(18,23)(19,22)(20,21), (9,14)(10,15)(11,16)(12,13)(17,21)(18,22)(19,23)(20,24), (1,6)(2,7)(3,8)(4,5)(17,21)(18,22)(19,23)(20,24), (1,15,23)(2,16,24)(3,13,21)(4,14,22)(5,9,18)(6,10,19)(7,11,20)(8,12,17)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(12,16)(17,24)(18,23)(19,22)(20,21), (9,14)(10,15)(11,16)(12,13)(17,21)(18,22)(19,23)(20,24), (1,6)(2,7)(3,8)(4,5)(17,21)(18,22)(19,23)(20,24), (1,15,23)(2,16,24)(3,13,21)(4,14,22)(5,9,18)(6,10,19)(7,11,20)(8,12,17) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,5),(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(12,16),(17,24),(18,23),(19,22),(20,21)], [(9,14),(10,15),(11,16),(12,13),(17,21),(18,22),(19,23),(20,24)], [(1,6),(2,7),(3,8),(4,5),(17,21),(18,22),(19,23),(20,24)], [(1,15,23),(2,16,24),(3,13,21),(4,14,22),(5,9,18),(6,10,19),(7,11,20),(8,12,17)]])
G:=TransitiveGroup(24,163);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(6 8)(10 12)(13 15)(18 20)(22 24)
(5 16)(6 13)(7 14)(8 15)(17 23)(18 24)(19 21)(20 22)
(1 11)(2 12)(3 9)(4 10)(17 23)(18 24)(19 21)(20 22)
(1 7 19)(2 8 20)(3 5 17)(4 6 18)(9 16 23)(10 13 24)(11 14 21)(12 15 22)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(10,12)(13,15)(18,20)(22,24), (5,16)(6,13)(7,14)(8,15)(17,23)(18,24)(19,21)(20,22), (1,11)(2,12)(3,9)(4,10)(17,23)(18,24)(19,21)(20,22), (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,16,23)(10,13,24)(11,14,21)(12,15,22)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(10,12)(13,15)(18,20)(22,24), (5,16)(6,13)(7,14)(8,15)(17,23)(18,24)(19,21)(20,22), (1,11)(2,12)(3,9)(4,10)(17,23)(18,24)(19,21)(20,22), (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,16,23)(10,13,24)(11,14,21)(12,15,22) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(6,8),(10,12),(13,15),(18,20),(22,24)], [(5,16),(6,13),(7,14),(8,15),(17,23),(18,24),(19,21),(20,22)], [(1,11),(2,12),(3,9),(4,10),(17,23),(18,24),(19,21),(20,22)], [(1,7,19),(2,8,20),(3,5,17),(4,6,18),(9,16,23),(10,13,24),(11,14,21),(12,15,22)]])
G:=TransitiveGroup(24,164);
D4×A4 is a maximal subgroup of
A4⋊SD16 D4⋊S4 D4⋊2S4
D4×A4 is a maximal quotient of SL2(𝔽3)⋊5D4 SL2(𝔽3)⋊6D4 Q16.A4 SD16.A4 D8.A4
action | f(x) | Disc(f) |
---|---|---|
12T51 | x12-19x10+133x8-422x6+588x4-279x2+27 | 212·315·78·136·294 |
Matrix representation of D4×A4 ►in GL5(ℤ)
0 | 1 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | -1 | -1 | -1 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,Integers())| [0,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,1,0,-1,0,0,0,0,-1],[1,0,0,0,0,0,1,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,1,-1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,-1,0,0,0,0,-1,1,0,0,0,-1,0] >;
D4×A4 in GAP, Magma, Sage, TeX
D_4\times A_4
% in TeX
G:=Group("D4xA4");
// GroupNames label
G:=SmallGroup(96,197);
// by ID
G=gap.SmallGroup(96,197);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,2,169,376,665]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=c^2=d^2=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export