Copied to
clipboard

G = C2×Q8.D6order 192 = 26·3

Direct product of C2 and Q8.D6

direct product, non-abelian, soluble

Aliases: C2×Q8.D6, C23.18S4, GL2(𝔽3)⋊1C22, CSU2(𝔽3)⋊1C22, SL2(𝔽3).2C23, (C2×Q8)⋊3D6, (C22×Q8)⋊4S3, C22.27(C2×S4), C2.10(C22×S4), Q8.2(C22×S3), (C2×GL2(𝔽3))⋊1C2, (C2×CSU2(𝔽3))⋊4C2, (C22×SL2(𝔽3))⋊6C2, (C2×SL2(𝔽3))⋊5C22, SmallGroup(192,1476)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C2×Q8.D6
C1C2Q8SL2(𝔽3)GL2(𝔽3)C2×GL2(𝔽3) — C2×Q8.D6
SL2(𝔽3) — C2×Q8.D6
C1C22C23

Generators and relations for C2×Q8.D6
 G = < a,b,c,d,e | a2=b4=d6=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, dbd-1=bc, dcd-1=b, ece-1=b-1c, ede-1=b2d-1 >

Subgroups: 555 in 153 conjugacy classes, 29 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C8, C2×C4, D4, Q8, Q8, C23, C23, Dic3, D6, C2×C6, C2×C8, M4(2), SD16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, SL2(𝔽3), C2×Dic3, C3⋊D4, C22×S3, C22×C6, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, CSU2(𝔽3), GL2(𝔽3), C2×SL2(𝔽3), C2×SL2(𝔽3), C2×C3⋊D4, C2×C8.C22, C2×CSU2(𝔽3), C2×GL2(𝔽3), Q8.D6, C22×SL2(𝔽3), C2×Q8.D6
Quotients: C1, C2, C22, S3, C23, D6, S4, C22×S3, C2×S4, Q8.D6, C22×S4, C2×Q8.D6

Character table of C2×Q8.D6

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F6A6B6C6D6E6F6G8A8B8C8D
 size 1111221212866661212888888812121212
ρ111111111111111111111111111    trivial
ρ21-1-11-11-111-1-111-11-111-11-1-11-1-11    linear of order 2
ρ31111-1-11111-1-11-1-11-1-111-1-111-1-1    linear of order 2
ρ41-1-111-1-111-11-111-1-1-1-1-11111-11-1    linear of order 2
ρ51111-1-1-1-111-1-11111-1-111-1-1-1-111    linear of order 2
ρ61-1-111-11-11-11-11-11-1-1-1-1111-11-11    linear of order 2
ρ7111111-1-111111-1-11111111-1-1-1-1    linear of order 2
ρ81-1-11-111-11-1-1111-1-111-11-1-1-111-1    linear of order 2
ρ92222-2-200-12-2-2200-111-1-1110000    orthogonal lifted from D6
ρ102-2-222-200-1-22-22001111-1-1-10000    orthogonal lifted from D6
ρ1122222200-1222200-1-1-1-1-1-1-10000    orthogonal lifted from S3
ρ122-2-22-2200-1-2-222001-1-11-1110000    orthogonal lifted from D6
ρ133333-3-3110-111-1-1-10000000-1-111    orthogonal lifted from C2×S4
ρ143-3-333-31-101-11-1-1100000001-11-1    orthogonal lifted from C2×S4
ρ153-3-33-331-1011-1-11-100000001-1-11    orthogonal lifted from C2×S4
ρ16333333110-1-1-1-1110000000-1-1-1-1    orthogonal lifted from S4
ρ173-3-33-33-11011-1-1-110000000-111-1    orthogonal lifted from C2×S4
ρ18333333-1-10-1-1-1-1-1-100000001111    orthogonal lifted from S4
ρ193333-3-3-1-10-111-111000000011-1-1    orthogonal lifted from C2×S4
ρ203-3-333-3-1101-11-11-10000000-11-11    orthogonal lifted from C2×S4
ρ214-44-40000-2000000-20022000000    symplectic lifted from Q8.D6, Schur index 2
ρ2244-4-40000-2000000200-22000000    symplectic lifted from Q8.D6, Schur index 2
ρ234-44-4000010000001--3-3-1-1-3--30000    complex lifted from Q8.D6
ρ244-44-4000010000001-3--3-1-1--3-30000    complex lifted from Q8.D6
ρ2544-4-400001000000-1-3--31-1-3--30000    complex lifted from Q8.D6
ρ2644-4-400001000000-1--3-31-1--3-30000    complex lifted from Q8.D6

Smallest permutation representation of C2×Q8.D6
On 32 points
Generators in S32
(1 6)(2 5)(3 4)(7 8)(9 19)(10 20)(11 15)(12 16)(13 17)(14 18)(21 24)(22 25)(23 26)(27 30)(28 31)(29 32)
(1 12 5 19)(2 9 6 16)(3 26 8 29)(4 23 7 32)(10 15 17 14)(11 13 18 20)(21 28 30 25)(22 24 31 27)
(1 10 5 17)(2 13 6 20)(3 24 8 27)(4 21 7 30)(9 11 16 18)(12 14 19 15)(22 29 31 26)(23 25 32 28)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12 13 14)(15 16 17 18 19 20)(21 22 23 24 25 26)(27 28 29 30 31 32)
(1 8 5 3)(2 4 6 7)(9 32 16 23)(10 22 17 31)(11 30 18 21)(12 26 19 29)(13 28 20 25)(14 24 15 27)

G:=sub<Sym(32)| (1,6)(2,5)(3,4)(7,8)(9,19)(10,20)(11,15)(12,16)(13,17)(14,18)(21,24)(22,25)(23,26)(27,30)(28,31)(29,32), (1,12,5,19)(2,9,6,16)(3,26,8,29)(4,23,7,32)(10,15,17,14)(11,13,18,20)(21,28,30,25)(22,24,31,27), (1,10,5,17)(2,13,6,20)(3,24,8,27)(4,21,7,30)(9,11,16,18)(12,14,19,15)(22,29,31,26)(23,25,32,28), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)(21,22,23,24,25,26)(27,28,29,30,31,32), (1,8,5,3)(2,4,6,7)(9,32,16,23)(10,22,17,31)(11,30,18,21)(12,26,19,29)(13,28,20,25)(14,24,15,27)>;

G:=Group( (1,6)(2,5)(3,4)(7,8)(9,19)(10,20)(11,15)(12,16)(13,17)(14,18)(21,24)(22,25)(23,26)(27,30)(28,31)(29,32), (1,12,5,19)(2,9,6,16)(3,26,8,29)(4,23,7,32)(10,15,17,14)(11,13,18,20)(21,28,30,25)(22,24,31,27), (1,10,5,17)(2,13,6,20)(3,24,8,27)(4,21,7,30)(9,11,16,18)(12,14,19,15)(22,29,31,26)(23,25,32,28), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)(21,22,23,24,25,26)(27,28,29,30,31,32), (1,8,5,3)(2,4,6,7)(9,32,16,23)(10,22,17,31)(11,30,18,21)(12,26,19,29)(13,28,20,25)(14,24,15,27) );

G=PermutationGroup([[(1,6),(2,5),(3,4),(7,8),(9,19),(10,20),(11,15),(12,16),(13,17),(14,18),(21,24),(22,25),(23,26),(27,30),(28,31),(29,32)], [(1,12,5,19),(2,9,6,16),(3,26,8,29),(4,23,7,32),(10,15,17,14),(11,13,18,20),(21,28,30,25),(22,24,31,27)], [(1,10,5,17),(2,13,6,20),(3,24,8,27),(4,21,7,30),(9,11,16,18),(12,14,19,15),(22,29,31,26),(23,25,32,28)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12,13,14),(15,16,17,18,19,20),(21,22,23,24,25,26),(27,28,29,30,31,32)], [(1,8,5,3),(2,4,6,7),(9,32,16,23),(10,22,17,31),(11,30,18,21),(12,26,19,29),(13,28,20,25),(14,24,15,27)]])

Matrix representation of C2×Q8.D6 in GL7(𝔽73)

72000000
07200000
00720000
0001000
0000100
0000010
0000001
,
0010000
7272720000
1000000
00096500
000656400
0000001
00000720
,
0100000
1000000
7272720000
00007200
0001000
000685648
00012589
,
1000000
0010000
7272720000
00072000
00096500
0001010
0006946564
,
72000000
1110000
00720000
000720710
0001611618
0001010
000648072

G:=sub<GL(7,GF(73))| [72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,72,1,0,0,0,0,0,72,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,9,65,0,0,0,0,0,65,64,0,0,0,0,0,0,0,0,72,0,0,0,0,0,1,0],[0,1,72,0,0,0,0,1,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,68,12,0,0,0,72,0,5,5,0,0,0,0,0,64,8,0,0,0,0,0,8,9],[1,0,72,0,0,0,0,0,0,72,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,9,1,69,0,0,0,0,65,0,4,0,0,0,0,0,1,65,0,0,0,0,0,0,64],[72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,16,1,64,0,0,0,0,1,0,8,0,0,0,71,16,1,0,0,0,0,0,18,0,72] >;

C2×Q8.D6 in GAP, Magma, Sage, TeX

C_2\times Q_8.D_6
% in TeX

G:=Group("C2xQ8.D6");
// GroupNames label

G:=SmallGroup(192,1476);
// by ID

G=gap.SmallGroup(192,1476);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,2102,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^6=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,d*b*d^-1=b*c,d*c*d^-1=b,e*c*e^-1=b^-1*c,e*d*e^-1=b^2*d^-1>;
// generators/relations

Export

Character table of C2×Q8.D6 in TeX

׿
×
𝔽