Extensions 1→N→G→Q→1 with N=C2×GL2(𝔽3) and Q=C2

Direct product G=N×Q with N=C2×GL2(𝔽3) and Q=C2
dρLabelID
C22×GL2(𝔽3)32C2^2xGL(2,3)192,1475

Semidirect products G=N:Q with N=C2×GL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×GL2(𝔽3))⋊1C2 = C2×Q8.D6φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)):1C2192,1476
(C2×GL2(𝔽3))⋊2C2 = C2×C4.3S4φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)):2C2192,1481
(C2×GL2(𝔽3))⋊3C2 = D4.4S4φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)164(C2xGL(2,3)):3C2192,1485
(C2×GL2(𝔽3))⋊4C2 = Q8⋊D12φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)):4C2192,952
(C2×GL2(𝔽3))⋊5C2 = C23.16S4φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)):5C2192,980
(C2×GL2(𝔽3))⋊6C2 = SL2(𝔽3)⋊D4φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)):6C2192,986
(C2×GL2(𝔽3))⋊7C2 = C2×C4.6S4φ: trivial image32(C2xGL(2,3)):7C2192,1480

Non-split extensions G=N.Q with N=C2×GL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×GL2(𝔽3)).1C2 = GL2(𝔽3)⋊C4φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)).1C2192,953
(C2×GL2(𝔽3)).2C2 = Q8.2D12φ: C2/C1C2 ⊆ Out C2×GL2(𝔽3)32(C2xGL(2,3)).2C2192,954
(C2×GL2(𝔽3)).3C2 = C4×GL2(𝔽3)φ: trivial image32(C2xGL(2,3)).3C2192,951

׿
×
𝔽