Extensions 1→N→G→Q→1 with N=C2xGL2(F3) and Q=C2

Direct product G=NxQ with N=C2xGL2(F3) and Q=C2
dρLabelID
C22xGL2(F3)32C2^2xGL(2,3)192,1475

Semidirect products G=N:Q with N=C2xGL2(F3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xGL2(F3)):1C2 = C2xQ8.D6φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)):1C2192,1476
(C2xGL2(F3)):2C2 = C2xC4.3S4φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)):2C2192,1481
(C2xGL2(F3)):3C2 = D4.4S4φ: C2/C1C2 ⊆ Out C2xGL2(F3)164(C2xGL(2,3)):3C2192,1485
(C2xGL2(F3)):4C2 = Q8:D12φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)):4C2192,952
(C2xGL2(F3)):5C2 = C23.16S4φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)):5C2192,980
(C2xGL2(F3)):6C2 = SL2(F3):D4φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)):6C2192,986
(C2xGL2(F3)):7C2 = C2xC4.6S4φ: trivial image32(C2xGL(2,3)):7C2192,1480

Non-split extensions G=N.Q with N=C2xGL2(F3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xGL2(F3)).1C2 = GL2(F3):C4φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)).1C2192,953
(C2xGL2(F3)).2C2 = Q8.2D12φ: C2/C1C2 ⊆ Out C2xGL2(F3)32(C2xGL(2,3)).2C2192,954
(C2xGL2(F3)).3C2 = C4xGL2(F3)φ: trivial image32(C2xGL(2,3)).3C2192,951

׿
x
:
Z
F
o
wr
Q
<