Copied to
clipboard

G = C6xC4:1D4order 192 = 26·3

Direct product of C6 and C4:1D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C6xC4:1D4, C4:1(C6xD4), C12:12(C2xD4), (C2xC12):33D4, C42:22(C2xC6), (C2xC42):14C6, (C22xD4):8C6, (C4xC12):59C22, (C6xD4):63C22, C24.16(C2xC6), C22.63(C6xD4), (C2xC6).350C24, C6.186(C22xD4), C23.8(C22xC6), (C2xC12).961C23, (C22xC6).88C23, (C23xC6).15C22, C22.24(C23xC6), (C22xC12).596C22, (C2xC4xC12):24C2, (D4xC2xC6):20C2, (C2xC4):7(C3xD4), C2.10(D4xC2xC6), (C2xD4):11(C2xC6), (C2xC6).684(C2xD4), (C2xC4).136(C22xC6), (C22xC4).131(C2xC6), SmallGroup(192,1419)

Series: Derived Chief Lower central Upper central

C1C22 — C6xC4:1D4
C1C2C22C2xC6C22xC6C6xD4C3xC4:1D4 — C6xC4:1D4
C1C22 — C6xC4:1D4
C1C22xC6 — C6xC4:1D4

Generators and relations for C6xC4:1D4
 G = < a,b,c,d | a6=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 882 in 498 conjugacy classes, 210 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2xC4, D4, C23, C23, C23, C12, C2xC6, C2xC6, C2xC6, C42, C22xC4, C2xD4, C2xD4, C24, C2xC12, C3xD4, C22xC6, C22xC6, C22xC6, C2xC42, C4:1D4, C22xD4, C4xC12, C22xC12, C6xD4, C6xD4, C23xC6, C2xC4:1D4, C2xC4xC12, C3xC4:1D4, D4xC2xC6, C6xC4:1D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, C2xD4, C24, C3xD4, C22xC6, C4:1D4, C22xD4, C6xD4, C23xC6, C2xC4:1D4, C3xC4:1D4, D4xC2xC6, C6xC4:1D4

Smallest permutation representation of C6xC4:1D4
On 96 points
Generators in S96
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 8 31 92)(2 9 32 93)(3 10 33 94)(4 11 34 95)(5 12 35 96)(6 7 36 91)(13 38 20 25)(14 39 21 26)(15 40 22 27)(16 41 23 28)(17 42 24 29)(18 37 19 30)(43 86 62 67)(44 87 63 68)(45 88 64 69)(46 89 65 70)(47 90 66 71)(48 85 61 72)(49 84 60 73)(50 79 55 74)(51 80 56 75)(52 81 57 76)(53 82 58 77)(54 83 59 78)
(1 66 26 58)(2 61 27 59)(3 62 28 60)(4 63 29 55)(5 64 30 56)(6 65 25 57)(7 70 13 76)(8 71 14 77)(9 72 15 78)(10 67 16 73)(11 68 17 74)(12 69 18 75)(19 80 96 88)(20 81 91 89)(21 82 92 90)(22 83 93 85)(23 84 94 86)(24 79 95 87)(31 47 39 53)(32 48 40 54)(33 43 41 49)(34 44 42 50)(35 45 37 51)(36 46 38 52)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 67)(7 62)(8 63)(9 64)(10 65)(11 66)(12 61)(13 60)(14 55)(15 56)(16 57)(17 58)(18 59)(19 54)(20 49)(21 50)(22 51)(23 52)(24 53)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 87)(32 88)(33 89)(34 90)(35 85)(36 86)(37 83)(38 84)(39 79)(40 80)(41 81)(42 82)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)

G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,8,31,92)(2,9,32,93)(3,10,33,94)(4,11,34,95)(5,12,35,96)(6,7,36,91)(13,38,20,25)(14,39,21,26)(15,40,22,27)(16,41,23,28)(17,42,24,29)(18,37,19,30)(43,86,62,67)(44,87,63,68)(45,88,64,69)(46,89,65,70)(47,90,66,71)(48,85,61,72)(49,84,60,73)(50,79,55,74)(51,80,56,75)(52,81,57,76)(53,82,58,77)(54,83,59,78), (1,66,26,58)(2,61,27,59)(3,62,28,60)(4,63,29,55)(5,64,30,56)(6,65,25,57)(7,70,13,76)(8,71,14,77)(9,72,15,78)(10,67,16,73)(11,68,17,74)(12,69,18,75)(19,80,96,88)(20,81,91,89)(21,82,92,90)(22,83,93,85)(23,84,94,86)(24,79,95,87)(31,47,39,53)(32,48,40,54)(33,43,41,49)(34,44,42,50)(35,45,37,51)(36,46,38,52), (1,68)(2,69)(3,70)(4,71)(5,72)(6,67)(7,62)(8,63)(9,64)(10,65)(11,66)(12,61)(13,60)(14,55)(15,56)(16,57)(17,58)(18,59)(19,54)(20,49)(21,50)(22,51)(23,52)(24,53)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,87)(32,88)(33,89)(34,90)(35,85)(36,86)(37,83)(38,84)(39,79)(40,80)(41,81)(42,82)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,8,31,92)(2,9,32,93)(3,10,33,94)(4,11,34,95)(5,12,35,96)(6,7,36,91)(13,38,20,25)(14,39,21,26)(15,40,22,27)(16,41,23,28)(17,42,24,29)(18,37,19,30)(43,86,62,67)(44,87,63,68)(45,88,64,69)(46,89,65,70)(47,90,66,71)(48,85,61,72)(49,84,60,73)(50,79,55,74)(51,80,56,75)(52,81,57,76)(53,82,58,77)(54,83,59,78), (1,66,26,58)(2,61,27,59)(3,62,28,60)(4,63,29,55)(5,64,30,56)(6,65,25,57)(7,70,13,76)(8,71,14,77)(9,72,15,78)(10,67,16,73)(11,68,17,74)(12,69,18,75)(19,80,96,88)(20,81,91,89)(21,82,92,90)(22,83,93,85)(23,84,94,86)(24,79,95,87)(31,47,39,53)(32,48,40,54)(33,43,41,49)(34,44,42,50)(35,45,37,51)(36,46,38,52), (1,68)(2,69)(3,70)(4,71)(5,72)(6,67)(7,62)(8,63)(9,64)(10,65)(11,66)(12,61)(13,60)(14,55)(15,56)(16,57)(17,58)(18,59)(19,54)(20,49)(21,50)(22,51)(23,52)(24,53)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,87)(32,88)(33,89)(34,90)(35,85)(36,86)(37,83)(38,84)(39,79)(40,80)(41,81)(42,82)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,8,31,92),(2,9,32,93),(3,10,33,94),(4,11,34,95),(5,12,35,96),(6,7,36,91),(13,38,20,25),(14,39,21,26),(15,40,22,27),(16,41,23,28),(17,42,24,29),(18,37,19,30),(43,86,62,67),(44,87,63,68),(45,88,64,69),(46,89,65,70),(47,90,66,71),(48,85,61,72),(49,84,60,73),(50,79,55,74),(51,80,56,75),(52,81,57,76),(53,82,58,77),(54,83,59,78)], [(1,66,26,58),(2,61,27,59),(3,62,28,60),(4,63,29,55),(5,64,30,56),(6,65,25,57),(7,70,13,76),(8,71,14,77),(9,72,15,78),(10,67,16,73),(11,68,17,74),(12,69,18,75),(19,80,96,88),(20,81,91,89),(21,82,92,90),(22,83,93,85),(23,84,94,86),(24,79,95,87),(31,47,39,53),(32,48,40,54),(33,43,41,49),(34,44,42,50),(35,45,37,51),(36,46,38,52)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,67),(7,62),(8,63),(9,64),(10,65),(11,66),(12,61),(13,60),(14,55),(15,56),(16,57),(17,58),(18,59),(19,54),(20,49),(21,50),(22,51),(23,52),(24,53),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,87),(32,88),(33,89),(34,90),(35,85),(36,86),(37,83),(38,84),(39,79),(40,80),(41,81),(42,82),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)]])

84 conjugacy classes

class 1 2A···2G2H···2O3A3B4A···4L6A···6N6O···6AD12A···12X
order12···22···2334···46···66···612···12
size11···14···4112···21···14···42···2

84 irreducible representations

dim1111111122
type+++++
imageC1C2C2C2C3C6C6C6D4C3xD4
kernelC6xC4:1D4C2xC4xC12C3xC4:1D4D4xC2xC6C2xC4:1D4C2xC42C4:1D4C22xD4C2xC12C2xC4
# reps11862216121224

Matrix representation of C6xC4:1D4 in GL6(F13)

400000
040000
009000
000900
000010
000001
,
1200000
0120000
001000
000100
0000012
000010
,
0120000
100000
000100
0012000
0000012
000010
,
010000
100000
0001200
0012000
0000120
000001

G:=sub<GL(6,GF(13))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1] >;

C6xC4:1D4 in GAP, Magma, Sage, TeX

C_6\times C_4\rtimes_1D_4
% in TeX

G:=Group("C6xC4:1D4");
// GroupNames label

G:=SmallGroup(192,1419);
// by ID

G=gap.SmallGroup(192,1419);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,344,2102,520]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<