Copied to
clipboard

G = Q8⋊3- 1+2order 216 = 23·33

The semidirect product of Q8 and 3- 1+2 acting via 3- 1+2/C32=C3

non-abelian, soluble

Aliases: Q823- 1+2, C32.SL2(𝔽3), Q8⋊C92C3, (C3×C6).1A4, C6.10(C3×A4), C2.(C32.A4), (C3×Q8).4C32, (Q8×C32).2C3, C3.4(C3×SL2(𝔽3)), SmallGroup(216,41)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8 — Q8⋊3- 1+2
C1C2Q8C3×Q8Q8⋊C9 — Q8⋊3- 1+2
Q8C3×Q8 — Q8⋊3- 1+2
C1C6C3×C6

Generators and relations for Q8⋊3- 1+2
 G = < a,b,c,d | a4=c9=d3=1, b2=a2, bab-1=a-1, cac-1=b, ad=da, cbc-1=ab, bd=db, dcd-1=c4 >

3C3
3C4
3C6
4C9
4C9
4C9
3C12
3C12
3C12
3C12
4C18
4C18
4C18
43- 1+2
3C3×Q8
3C3×C12
4C2×3- 1+2

Smallest permutation representation of Q8⋊3- 1+2
On 72 points
Generators in S72
(1 18 71 28)(2 24 72 41)(3 61 64 47)(4 12 65 31)(5 27 66 44)(6 55 67 50)(7 15 68 34)(8 21 69 38)(9 58 70 53)(10 60 29 46)(11 42 30 25)(13 63 32 49)(14 45 33 19)(16 57 35 52)(17 39 36 22)(20 51 37 56)(23 54 40 59)(26 48 43 62)
(1 23 71 40)(2 60 72 46)(3 11 64 30)(4 26 65 43)(5 63 66 49)(6 14 67 33)(7 20 68 37)(8 57 69 52)(9 17 70 36)(10 41 29 24)(12 62 31 48)(13 44 32 27)(15 56 34 51)(16 38 35 21)(18 59 28 54)(19 50 45 55)(22 53 39 58)(25 47 42 61)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 22 25)(21 27 24)(29 35 32)(30 33 36)(38 44 41)(39 42 45)(46 52 49)(47 50 53)(55 58 61)(57 63 60)(64 67 70)(66 72 69)

G:=sub<Sym(72)| (1,18,71,28)(2,24,72,41)(3,61,64,47)(4,12,65,31)(5,27,66,44)(6,55,67,50)(7,15,68,34)(8,21,69,38)(9,58,70,53)(10,60,29,46)(11,42,30,25)(13,63,32,49)(14,45,33,19)(16,57,35,52)(17,39,36,22)(20,51,37,56)(23,54,40,59)(26,48,43,62), (1,23,71,40)(2,60,72,46)(3,11,64,30)(4,26,65,43)(5,63,66,49)(6,14,67,33)(7,20,68,37)(8,57,69,52)(9,17,70,36)(10,41,29,24)(12,62,31,48)(13,44,32,27)(15,56,34,51)(16,38,35,21)(18,59,28,54)(19,50,45,55)(22,53,39,58)(25,47,42,61), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,22,25)(21,27,24)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(46,52,49)(47,50,53)(55,58,61)(57,63,60)(64,67,70)(66,72,69)>;

G:=Group( (1,18,71,28)(2,24,72,41)(3,61,64,47)(4,12,65,31)(5,27,66,44)(6,55,67,50)(7,15,68,34)(8,21,69,38)(9,58,70,53)(10,60,29,46)(11,42,30,25)(13,63,32,49)(14,45,33,19)(16,57,35,52)(17,39,36,22)(20,51,37,56)(23,54,40,59)(26,48,43,62), (1,23,71,40)(2,60,72,46)(3,11,64,30)(4,26,65,43)(5,63,66,49)(6,14,67,33)(7,20,68,37)(8,57,69,52)(9,17,70,36)(10,41,29,24)(12,62,31,48)(13,44,32,27)(15,56,34,51)(16,38,35,21)(18,59,28,54)(19,50,45,55)(22,53,39,58)(25,47,42,61), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,22,25)(21,27,24)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(46,52,49)(47,50,53)(55,58,61)(57,63,60)(64,67,70)(66,72,69) );

G=PermutationGroup([[(1,18,71,28),(2,24,72,41),(3,61,64,47),(4,12,65,31),(5,27,66,44),(6,55,67,50),(7,15,68,34),(8,21,69,38),(9,58,70,53),(10,60,29,46),(11,42,30,25),(13,63,32,49),(14,45,33,19),(16,57,35,52),(17,39,36,22),(20,51,37,56),(23,54,40,59),(26,48,43,62)], [(1,23,71,40),(2,60,72,46),(3,11,64,30),(4,26,65,43),(5,63,66,49),(6,14,67,33),(7,20,68,37),(8,57,69,52),(9,17,70,36),(10,41,29,24),(12,62,31,48),(13,44,32,27),(15,56,34,51),(16,38,35,21),(18,59,28,54),(19,50,45,55),(22,53,39,58),(25,47,42,61)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,22,25),(21,27,24),(29,35,32),(30,33,36),(38,44,41),(39,42,45),(46,52,49),(47,50,53),(55,58,61),(57,63,60),(64,67,70),(66,72,69)]])

Q8⋊3- 1+2 is a maximal subgroup of   C32.CSU2(𝔽3)  C32.GL2(𝔽3)  Q8⋊C94C6

31 conjugacy classes

class 1  2 3A3B3C3D 4 6A6B6C6D9A···9F12A···12H18A···18F
order123333466669···912···1218···18
size1111336113312···126···612···12

31 irreducible representations

dim11122233336
type+-+
imageC1C3C3SL2(𝔽3)SL2(𝔽3)C3×SL2(𝔽3)A43- 1+2C3×A4C32.A4Q8⋊3- 1+2
kernelQ8⋊3- 1+2Q8⋊C9Q8×C32C32C32C3C3×C6Q8C6C2C1
# reps16212612262

Matrix representation of Q8⋊3- 1+2 in GL5(𝔽37)

036000
10000
003600
000360
003601
,
83000
329000
00100
001360
001036
,
313000
25000
001350
0063626
000360
,
260000
026000
00100
006260
0014010

G:=sub<GL(5,GF(37))| [0,1,0,0,0,36,0,0,0,0,0,0,36,0,36,0,0,0,36,0,0,0,0,0,1],[8,3,0,0,0,3,29,0,0,0,0,0,1,1,1,0,0,0,36,0,0,0,0,0,36],[31,2,0,0,0,3,5,0,0,0,0,0,1,6,0,0,0,35,36,36,0,0,0,26,0],[26,0,0,0,0,0,26,0,0,0,0,0,1,6,14,0,0,0,26,0,0,0,0,0,10] >;

Q8⋊3- 1+2 in GAP, Magma, Sage, TeX

Q_8\rtimes 3_-^{1+2}
% in TeX

G:=Group("Q8:ES-(3,1)");
// GroupNames label

G:=SmallGroup(216,41);
// by ID

G=gap.SmallGroup(216,41);
# by ID

G:=PCGroup([6,-3,-3,-3,-2,2,-2,54,145,1299,117,2434,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^9=d^3=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,a*d=d*a,c*b*c^-1=a*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of Q8⋊3- 1+2 in TeX

׿
×
𝔽