Extensions 1→N→G→Q→1 with N=C9 and Q=C3xD4

Direct product G=NxQ with N=C9 and Q=C3xD4
dρLabelID
D4xC3xC9108D4xC3xC9216,76

Semidirect products G=N:Q with N=C9 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C9:1(C3xD4) = D36:C3φ: C3xD4/C4C6 ⊆ Aut C9366+C9:1(C3xD4)216,54
C9:2(C3xD4) = Dic9:C6φ: C3xD4/C22C6 ⊆ Aut C9366C9:2(C3xD4)216,62
C9:3(C3xD4) = D4x3- 1+2φ: C3xD4/D4C3 ⊆ Aut C9366C9:3(C3xD4)216,78
C9:4(C3xD4) = C3xD36φ: C3xD4/C12C2 ⊆ Aut C9722C9:4(C3xD4)216,46
C9:5(C3xD4) = C3xC9:D4φ: C3xD4/C2xC6C2 ⊆ Aut C9362C9:5(C3xD4)216,57

Non-split extensions G=N.Q with N=C9 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C9.(C3xD4) = D4xC27central extension (φ=1)1082C9.(C3xD4)216,10

׿
x
:
Z
F
o
wr
Q
<