Copied to
clipboard

G = D4xC27order 216 = 23·33

Direct product of C27 and D4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: D4xC27, C4:C54, C108:3C2, C36.7C6, C12.3C18, C22:2C54, C54.6C22, C9.(C3xD4), C3.(D4xC9), C54o(D4xC9), (D4xC9).C3, (C3xD4).C9, (C2xC54):1C2, (C2xC6).2C18, C6.6(C2xC18), (C2xC18).4C6, C2.1(C2xC54), C18.14(C2xC6), SmallGroup(216,10)

Series: Derived Chief Lower central Upper central

C1C2 — D4xC27
C1C3C9C18C54C2xC54 — D4xC27
C1C2 — D4xC27
C1C54 — D4xC27

Generators and relations for D4xC27
 G = < a,b,c | a27=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 40 in 32 conjugacy classes, 24 normal (16 characteristic)
Quotients: C1, C2, C3, C22, C6, D4, C9, C2xC6, C18, C3xD4, C27, C2xC18, C54, D4xC9, C2xC54, D4xC27
2C2
2C2
2C6
2C6
2C18
2C18
2C54
2C54

Smallest permutation representation of D4xC27
On 108 points
Generators in S108
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 53 65 82)(2 54 66 83)(3 28 67 84)(4 29 68 85)(5 30 69 86)(6 31 70 87)(7 32 71 88)(8 33 72 89)(9 34 73 90)(10 35 74 91)(11 36 75 92)(12 37 76 93)(13 38 77 94)(14 39 78 95)(15 40 79 96)(16 41 80 97)(17 42 81 98)(18 43 55 99)(19 44 56 100)(20 45 57 101)(21 46 58 102)(22 47 59 103)(23 48 60 104)(24 49 61 105)(25 50 62 106)(26 51 63 107)(27 52 64 108)
(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 82)(54 83)

G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,53,65,82)(2,54,66,83)(3,28,67,84)(4,29,68,85)(5,30,69,86)(6,31,70,87)(7,32,71,88)(8,33,72,89)(9,34,73,90)(10,35,74,91)(11,36,75,92)(12,37,76,93)(13,38,77,94)(14,39,78,95)(15,40,79,96)(16,41,80,97)(17,42,81,98)(18,43,55,99)(19,44,56,100)(20,45,57,101)(21,46,58,102)(22,47,59,103)(23,48,60,104)(24,49,61,105)(25,50,62,106)(26,51,63,107)(27,52,64,108), (28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,82)(54,83)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,53,65,82)(2,54,66,83)(3,28,67,84)(4,29,68,85)(5,30,69,86)(6,31,70,87)(7,32,71,88)(8,33,72,89)(9,34,73,90)(10,35,74,91)(11,36,75,92)(12,37,76,93)(13,38,77,94)(14,39,78,95)(15,40,79,96)(16,41,80,97)(17,42,81,98)(18,43,55,99)(19,44,56,100)(20,45,57,101)(21,46,58,102)(22,47,59,103)(23,48,60,104)(24,49,61,105)(25,50,62,106)(26,51,63,107)(27,52,64,108), (28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,82)(54,83) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,53,65,82),(2,54,66,83),(3,28,67,84),(4,29,68,85),(5,30,69,86),(6,31,70,87),(7,32,71,88),(8,33,72,89),(9,34,73,90),(10,35,74,91),(11,36,75,92),(12,37,76,93),(13,38,77,94),(14,39,78,95),(15,40,79,96),(16,41,80,97),(17,42,81,98),(18,43,55,99),(19,44,56,100),(20,45,57,101),(21,46,58,102),(22,47,59,103),(23,48,60,104),(24,49,61,105),(25,50,62,106),(26,51,63,107),(27,52,64,108)], [(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,82),(54,83)]])

D4xC27 is a maximal subgroup of   D4.D27  D4:D27  D4:2D27

135 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F9A···9F12A12B18A···18F18G···18R27A···27R36A···36F54A···54R54S···54BB108A···108R
order12223346666669···9121218···1818···1827···2736···3654···5454···54108···108
size11221121122221···1221···12···21···12···21···12···22···2

135 irreducible representations

dim1111111111112222
type++++
imageC1C2C2C3C6C6C9C18C18C27C54C54D4C3xD4D4xC9D4xC27
kernelD4xC27C108C2xC54D4xC9C36C2xC18C3xD4C12C2xC6D4C4C22C27C9C3C1
# reps112224661218183612618

Matrix representation of D4xC27 in GL2(F109) generated by

210
021
,
162
7108
,
162
0108
G:=sub<GL(2,GF(109))| [21,0,0,21],[1,7,62,108],[1,0,62,108] >;

D4xC27 in GAP, Magma, Sage, TeX

D_4\times C_{27}
% in TeX

G:=Group("D4xC27");
// GroupNames label

G:=SmallGroup(216,10);
// by ID

G=gap.SmallGroup(216,10);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,122,118]);
// Polycyclic

G:=Group<a,b,c|a^27=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D4xC27 in TeX

׿
x
:
Z
F
o
wr
Q
<