Copied to
clipboard

G = C3xD36order 216 = 23·33

Direct product of C3 and D36

direct product, metacyclic, supersoluble, monomial

Aliases: C3xD36, C36:5C6, C12:3D9, D18:4C6, C6.21D18, C32.3D12, C4:(C3xD9), (C3xC9):5D4, C9:4(C3xD4), (C3xC36):2C2, (C6xD9):3C2, C6.8(S3xC6), C2.4(C6xD9), C12.2(C3xS3), C3.1(C3xD12), (C3xC6).47D6, (C3xC12).13S3, C18.11(C2xC6), (C3xC18).15C22, SmallGroup(216,46)

Series: Derived Chief Lower central Upper central

C1C18 — C3xD36
C1C3C9C18C3xC18C6xD9 — C3xD36
C9C18 — C3xD36
C1C6C12

Generators and relations for C3xD36
 G = < a,b,c | a3=b36=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 212 in 54 conjugacy classes, 24 normal (20 characteristic)
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2xC6, D9, C3xS3, D12, C3xD4, D18, S3xC6, C3xD9, D36, C3xD12, C6xD9, C3xD36
18C2
18C2
2C3
9C22
9C22
2C6
6S3
6S3
18C6
18C6
2C9
9D4
2C12
3D6
3D6
9C2xC6
9C2xC6
2C18
2D9
2D9
6C3xS3
6C3xS3
3D12
9C3xD4
2C36
3S3xC6
3S3xC6
2C3xD9
2C3xD9
3C3xD12

Smallest permutation representation of C3xD36
On 72 points
Generators in S72
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 72)(18 71)(19 70)(20 69)(21 68)(22 67)(23 66)(24 65)(25 64)(26 63)(27 62)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 54)(36 53)

G:=sub<Sym(72)| (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)>;

G:=Group( (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53) );

G=PermutationGroup([[(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,72),(18,71),(19,70),(20,69),(21,68),(22,67),(23,66),(24,65),(25,64),(26,63),(27,62),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,54),(36,53)]])

C3xD36 is a maximal subgroup of
D36.S3  C3:D72  D36:S3  Dic6:D9  D18.D6  D36:5S3  C36:D6  C3xD4xD9

63 conjugacy classes

class 1 2A2B2C3A3B3C3D3E 4 6A6B6C6D6E6F6G6H6I9A···9I12A···12H18A···18I36A···36R
order12223333346666666669···912···1218···1836···36
size11181811222211222181818182···22···22···22···2

63 irreducible representations

dim11111122222222222222
type++++++++++
imageC1C2C2C3C6C6S3D4D6D9C3xS3C3xD4D12D18S3xC6C3xD9D36C3xD12C6xD9C3xD36
kernelC3xD36C3xC36C6xD9D36C36D18C3xC12C3xC9C3xC6C12C12C9C32C6C6C4C3C3C2C1
# reps112224111322232664612

Matrix representation of C3xD36 in GL2(F37) generated by

260
026
,
130
120
,
3132
76
G:=sub<GL(2,GF(37))| [26,0,0,26],[13,1,0,20],[31,7,32,6] >;

C3xD36 in GAP, Magma, Sage, TeX

C_3\times D_{36}
% in TeX

G:=Group("C3xD36");
// GroupNames label

G:=SmallGroup(216,46);
// by ID

G=gap.SmallGroup(216,46);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,3604,208,5189]);
// Polycyclic

G:=Group<a,b,c|a^3=b^36=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xD36 in TeX

׿
x
:
Z
F
o
wr
Q
<