Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C13⋊C4

Direct product G=N×Q with N=C2 and Q=C2×C13⋊C4
dρLabelID
C22×C13⋊C452C2^2xC13:C4208,49


Non-split extensions G=N.Q with N=C2 and Q=C2×C13⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C13⋊C4) = D13⋊C8central extension (φ=1)1044C2.1(C2xC13:C4)208,28
C2.2(C2×C13⋊C4) = C4×C13⋊C4central extension (φ=1)524C2.2(C2xC13:C4)208,30
C2.3(C2×C13⋊C4) = C2×C13⋊C8central extension (φ=1)208C2.3(C2xC13:C4)208,32
C2.4(C2×C13⋊C4) = C52.C4central stem extension (φ=1)1044C2.4(C2xC13:C4)208,29
C2.5(C2×C13⋊C4) = C52⋊C4central stem extension (φ=1)524C2.5(C2xC13:C4)208,31
C2.6(C2×C13⋊C4) = C13⋊M4(2)central stem extension (φ=1)1044-C2.6(C2xC13:C4)208,33
C2.7(C2×C13⋊C4) = D13.D4central stem extension (φ=1)524+C2.7(C2xC13:C4)208,34

׿
×
𝔽