Copied to
clipboard

G = C2×C13⋊C8order 208 = 24·13

Direct product of C2 and C13⋊C8

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C13⋊C8, C26⋊C8, Dic13.2C4, Dic13.6C22, C132(C2×C8), (C2×C26).1C4, C26.5(C2×C4), C22.2(C13⋊C4), (C2×Dic13).4C2, C2.3(C2×C13⋊C4), SmallGroup(208,32)

Series: Derived Chief Lower central Upper central

C1C13 — C2×C13⋊C8
C1C13C26Dic13C13⋊C8 — C2×C13⋊C8
C13 — C2×C13⋊C8
C1C22

Generators and relations for C2×C13⋊C8
 G = < a,b,c | a2=b13=c8=1, ab=ba, ac=ca, cbc-1=b5 >

13C4
13C4
13C8
13C2×C4
13C8
13C2×C8

Character table of C2×C13⋊C8

 class 12A2B2C4A4B4C4D8A8B8C8D8E8F8G8H13A13B13C26A26B26C26D26E26F26G26H26I
 size 1111131313131313131313131313444444444444
ρ11111111111111111111111111111    trivial
ρ21-1-11-111-1-11111-1-1-11111-1-1-11-1-1-11    linear of order 2
ρ31-1-11-111-11-1-1-1-11111111-1-1-11-1-1-11    linear of order 2
ρ411111111-1-1-1-1-1-1-1-1111111111111    linear of order 2
ρ51111-1-1-1-1-iii-i-iii-i111111111111    linear of order 4
ρ61-1-111-1-11iii-i-i-i-ii1111-1-1-11-1-1-11    linear of order 4
ρ71-1-111-1-11-i-i-iiiii-i1111-1-1-11-1-1-11    linear of order 4
ρ81111-1-1-1-1i-i-iii-i-ii111111111111    linear of order 4
ρ911-1-1-i-iiiζ8ζ83ζ87ζ8ζ85ζ87ζ83ζ85111-1-1-1-1-1111-1    linear of order 8
ρ101-11-1i-ii-iζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ8111-1111-1-1-1-1-1    linear of order 8
ρ1111-1-1ii-i-iζ83ζ8ζ85ζ83ζ87ζ85ζ8ζ87111-1-1-1-1-1111-1    linear of order 8
ρ121-11-1-ii-iiζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ83111-1111-1-1-1-1-1    linear of order 8
ρ1311-1-1-i-iiiζ85ζ87ζ83ζ85ζ8ζ83ζ87ζ8111-1-1-1-1-1111-1    linear of order 8
ρ141-11-1i-ii-iζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ85111-1111-1-1-1-1-1    linear of order 8
ρ151-11-1-ii-iiζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ87111-1111-1-1-1-1-1    linear of order 8
ρ1611-1-1ii-i-iζ87ζ85ζ8ζ87ζ83ζ8ζ85ζ83111-1-1-1-1-1111-1    linear of order 8
ρ174-4-44000000000000ζ131213813513ζ13111310133132ζ139137136134ζ13913713613413121381351313111310133132139137136134ζ13121381351313121381351313111310133132139137136134ζ13111310133132    orthogonal lifted from C2×C13⋊C4
ρ184-4-44000000000000ζ139137136134ζ131213813513ζ13111310133132ζ1311131013313213913713613413121381351313111310133132ζ13913713613413913713613413121381351313111310133132ζ131213813513    orthogonal lifted from C2×C13⋊C4
ρ194444000000000000ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132    orthogonal lifted from C13⋊C4
ρ204-4-44000000000000ζ13111310133132ζ139137136134ζ131213813513ζ13121381351313111310133132139137136134131213813513ζ1311131013313213111310133132139137136134131213813513ζ139137136134    orthogonal lifted from C2×C13⋊C4
ρ214444000000000000ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ139137136134    orthogonal lifted from C13⋊C4
ρ224444000000000000ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ131213813513    orthogonal lifted from C13⋊C4
ρ2344-4-4000000000000ζ139137136134ζ131213813513ζ131113101331321311131013313213913713613413121381351313111310133132139137136134ζ139137136134ζ131213813513ζ13111310133132131213813513    symplectic lifted from C13⋊C8, Schur index 2
ρ244-44-4000000000000ζ13111310133132ζ139137136134ζ131213813513131213813513ζ13111310133132ζ139137136134ζ1312138135131311131013313213111310133132139137136134131213813513139137136134    symplectic lifted from C13⋊C8, Schur index 2
ρ2544-4-4000000000000ζ13111310133132ζ139137136134ζ1312138135131312138135131311131013313213913713613413121381351313111310133132ζ13111310133132ζ139137136134ζ131213813513139137136134    symplectic lifted from C13⋊C8, Schur index 2
ρ2644-4-4000000000000ζ131213813513ζ13111310133132ζ13913713613413913713613413121381351313111310133132139137136134131213813513ζ131213813513ζ13111310133132ζ13913713613413111310133132    symplectic lifted from C13⋊C8, Schur index 2
ρ274-44-4000000000000ζ139137136134ζ131213813513ζ1311131013313213111310133132ζ139137136134ζ131213813513ζ1311131013313213913713613413913713613413121381351313111310133132131213813513    symplectic lifted from C13⋊C8, Schur index 2
ρ284-44-4000000000000ζ131213813513ζ13111310133132ζ139137136134139137136134ζ131213813513ζ13111310133132ζ1391371361341312138135131312138135131311131013313213913713613413111310133132    symplectic lifted from C13⋊C8, Schur index 2

Smallest permutation representation of C2×C13⋊C8
Regular action on 208 points
Generators in S208
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 73)(9 74)(10 75)(11 76)(12 77)(13 78)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 65)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 101)(37 102)(38 103)(39 104)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(105 170)(106 171)(107 172)(108 173)(109 174)(110 175)(111 176)(112 177)(113 178)(114 179)(115 180)(116 181)(117 182)(118 163)(119 164)(120 165)(121 166)(122 167)(123 168)(124 169)(125 157)(126 158)(127 159)(128 160)(129 161)(130 162)(131 208)(132 196)(133 197)(134 198)(135 199)(136 200)(137 201)(138 202)(139 203)(140 204)(141 205)(142 206)(143 207)(144 191)(145 192)(146 193)(147 194)(148 195)(149 183)(150 184)(151 185)(152 186)(153 187)(154 188)(155 189)(156 190)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169)(170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 155 44 128 14 134 32 110)(2 150 43 120 15 142 31 115)(3 145 42 125 16 137 30 107)(4 153 41 130 17 132 29 112)(5 148 40 122 18 140 28 117)(6 156 52 127 19 135 27 109)(7 151 51 119 20 143 39 114)(8 146 50 124 21 138 38 106)(9 154 49 129 22 133 37 111)(10 149 48 121 23 141 36 116)(11 144 47 126 24 136 35 108)(12 152 46 118 25 131 34 113)(13 147 45 123 26 139 33 105)(53 198 97 175 66 189 89 160)(54 206 96 180 67 184 88 165)(55 201 95 172 68 192 87 157)(56 196 94 177 69 187 86 162)(57 204 93 182 70 195 85 167)(58 199 92 174 71 190 84 159)(59 207 104 179 72 185 83 164)(60 202 103 171 73 193 82 169)(61 197 102 176 74 188 81 161)(62 205 101 181 75 183 80 166)(63 200 100 173 76 191 79 158)(64 208 99 178 77 186 91 163)(65 203 98 170 78 194 90 168)

G:=sub<Sym(208)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(105,170)(106,171)(107,172)(108,173)(109,174)(110,175)(111,176)(112,177)(113,178)(114,179)(115,180)(116,181)(117,182)(118,163)(119,164)(120,165)(121,166)(122,167)(123,168)(124,169)(125,157)(126,158)(127,159)(128,160)(129,161)(130,162)(131,208)(132,196)(133,197)(134,198)(135,199)(136,200)(137,201)(138,202)(139,203)(140,204)(141,205)(142,206)(143,207)(144,191)(145,192)(146,193)(147,194)(148,195)(149,183)(150,184)(151,185)(152,186)(153,187)(154,188)(155,189)(156,190), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169)(170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208), (1,155,44,128,14,134,32,110)(2,150,43,120,15,142,31,115)(3,145,42,125,16,137,30,107)(4,153,41,130,17,132,29,112)(5,148,40,122,18,140,28,117)(6,156,52,127,19,135,27,109)(7,151,51,119,20,143,39,114)(8,146,50,124,21,138,38,106)(9,154,49,129,22,133,37,111)(10,149,48,121,23,141,36,116)(11,144,47,126,24,136,35,108)(12,152,46,118,25,131,34,113)(13,147,45,123,26,139,33,105)(53,198,97,175,66,189,89,160)(54,206,96,180,67,184,88,165)(55,201,95,172,68,192,87,157)(56,196,94,177,69,187,86,162)(57,204,93,182,70,195,85,167)(58,199,92,174,71,190,84,159)(59,207,104,179,72,185,83,164)(60,202,103,171,73,193,82,169)(61,197,102,176,74,188,81,161)(62,205,101,181,75,183,80,166)(63,200,100,173,76,191,79,158)(64,208,99,178,77,186,91,163)(65,203,98,170,78,194,90,168)>;

G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(105,170)(106,171)(107,172)(108,173)(109,174)(110,175)(111,176)(112,177)(113,178)(114,179)(115,180)(116,181)(117,182)(118,163)(119,164)(120,165)(121,166)(122,167)(123,168)(124,169)(125,157)(126,158)(127,159)(128,160)(129,161)(130,162)(131,208)(132,196)(133,197)(134,198)(135,199)(136,200)(137,201)(138,202)(139,203)(140,204)(141,205)(142,206)(143,207)(144,191)(145,192)(146,193)(147,194)(148,195)(149,183)(150,184)(151,185)(152,186)(153,187)(154,188)(155,189)(156,190), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169)(170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208), (1,155,44,128,14,134,32,110)(2,150,43,120,15,142,31,115)(3,145,42,125,16,137,30,107)(4,153,41,130,17,132,29,112)(5,148,40,122,18,140,28,117)(6,156,52,127,19,135,27,109)(7,151,51,119,20,143,39,114)(8,146,50,124,21,138,38,106)(9,154,49,129,22,133,37,111)(10,149,48,121,23,141,36,116)(11,144,47,126,24,136,35,108)(12,152,46,118,25,131,34,113)(13,147,45,123,26,139,33,105)(53,198,97,175,66,189,89,160)(54,206,96,180,67,184,88,165)(55,201,95,172,68,192,87,157)(56,196,94,177,69,187,86,162)(57,204,93,182,70,195,85,167)(58,199,92,174,71,190,84,159)(59,207,104,179,72,185,83,164)(60,202,103,171,73,193,82,169)(61,197,102,176,74,188,81,161)(62,205,101,181,75,183,80,166)(63,200,100,173,76,191,79,158)(64,208,99,178,77,186,91,163)(65,203,98,170,78,194,90,168) );

G=PermutationGroup([[(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,73),(9,74),(10,75),(11,76),(12,77),(13,78),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,65),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,101),(37,102),(38,103),(39,104),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(105,170),(106,171),(107,172),(108,173),(109,174),(110,175),(111,176),(112,177),(113,178),(114,179),(115,180),(116,181),(117,182),(118,163),(119,164),(120,165),(121,166),(122,167),(123,168),(124,169),(125,157),(126,158),(127,159),(128,160),(129,161),(130,162),(131,208),(132,196),(133,197),(134,198),(135,199),(136,200),(137,201),(138,202),(139,203),(140,204),(141,205),(142,206),(143,207),(144,191),(145,192),(146,193),(147,194),(148,195),(149,183),(150,184),(151,185),(152,186),(153,187),(154,188),(155,189),(156,190)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169),(170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,155,44,128,14,134,32,110),(2,150,43,120,15,142,31,115),(3,145,42,125,16,137,30,107),(4,153,41,130,17,132,29,112),(5,148,40,122,18,140,28,117),(6,156,52,127,19,135,27,109),(7,151,51,119,20,143,39,114),(8,146,50,124,21,138,38,106),(9,154,49,129,22,133,37,111),(10,149,48,121,23,141,36,116),(11,144,47,126,24,136,35,108),(12,152,46,118,25,131,34,113),(13,147,45,123,26,139,33,105),(53,198,97,175,66,189,89,160),(54,206,96,180,67,184,88,165),(55,201,95,172,68,192,87,157),(56,196,94,177,69,187,86,162),(57,204,93,182,70,195,85,167),(58,199,92,174,71,190,84,159),(59,207,104,179,72,185,83,164),(60,202,103,171,73,193,82,169),(61,197,102,176,74,188,81,161),(62,205,101,181,75,183,80,166),(63,200,100,173,76,191,79,158),(64,208,99,178,77,186,91,163),(65,203,98,170,78,194,90,168)]])

C2×C13⋊C8 is a maximal subgroup of   C52⋊C8  C26.C42  D26⋊C8  Dic13⋊C8  C26.M4(2)  Dic26.C4
C2×C13⋊C8 is a maximal quotient of   C52.C8  C52⋊C8  C26.M4(2)

Matrix representation of C2×C13⋊C8 in GL6(𝔽313)

100000
03120000
001000
000100
000010
000001
,
100000
010000
00241210241312
001000
000100
000010
,
12500000
03120000
004482216127
0027077171235
00114164131285
0016410028061

G:=sub<GL(6,GF(313))| [1,0,0,0,0,0,0,312,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,241,1,0,0,0,0,210,0,1,0,0,0,241,0,0,1,0,0,312,0,0,0],[125,0,0,0,0,0,0,312,0,0,0,0,0,0,44,270,114,164,0,0,82,77,164,100,0,0,216,171,131,280,0,0,127,235,285,61] >;

C2×C13⋊C8 in GAP, Magma, Sage, TeX

C_2\times C_{13}\rtimes C_8
% in TeX

G:=Group("C2xC13:C8");
// GroupNames label

G:=SmallGroup(208,32);
// by ID

G=gap.SmallGroup(208,32);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,20,42,3204,1214]);
// Polycyclic

G:=Group<a,b,c|a^2=b^13=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C2×C13⋊C8 in TeX
Character table of C2×C13⋊C8 in TeX

׿
×
𝔽