Extensions 1→N→G→Q→1 with N=C6xC3:S3 and Q=C2

Direct product G=NxQ with N=C6xC3:S3 and Q=C2
dρLabelID
C2xC6xC3:S372C2xC6xC3:S3216,175

Semidirect products G=N:Q with N=C6xC3:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xC3:S3):1C2 = C3xC3:D12φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3):1C2216,122
(C6xC3:S3):2C2 = C33:6D4φ: C2/C1C2 ⊆ Out C6xC3:S372(C6xC3:S3):2C2216,127
(C6xC3:S3):3C2 = C33:8D4φ: C2/C1C2 ⊆ Out C6xC3:S336(C6xC3:S3):3C2216,129
(C6xC3:S3):4C2 = C33:9D4φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3):4C2216,132
(C6xC3:S3):5C2 = C3xC12:S3φ: C2/C1C2 ⊆ Out C6xC3:S372(C6xC3:S3):5C2216,142
(C6xC3:S3):6C2 = C3xC32:7D4φ: C2/C1C2 ⊆ Out C6xC3:S336(C6xC3:S3):6C2216,144
(C6xC3:S3):7C2 = S32xC6φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3):7C2216,170
(C6xC3:S3):8C2 = C2xS3xC3:S3φ: C2/C1C2 ⊆ Out C6xC3:S336(C6xC3:S3):8C2216,171
(C6xC3:S3):9C2 = C2xC32:4D6φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3):9C2216,172

Non-split extensions G=N.Q with N=C6xC3:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xC3:S3).1C2 = C3xC6.D6φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3).1C2216,120
(C6xC3:S3).2C2 = Dic3xC3:S3φ: C2/C1C2 ⊆ Out C6xC3:S372(C6xC3:S3).2C2216,125
(C6xC3:S3).3C2 = C33:9(C2xC4)φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3).3C2216,131
(C6xC3:S3).4C2 = C6xC32:C4φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3).4C2216,168
(C6xC3:S3).5C2 = C2xC33:C4φ: C2/C1C2 ⊆ Out C6xC3:S3244(C6xC3:S3).5C2216,169
(C6xC3:S3).6C2 = C12xC3:S3φ: trivial image72(C6xC3:S3).6C2216,141

׿
x
:
Z
F
o
wr
Q
<