Extensions 1→N→G→Q→1 with N=C6×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C6×C3⋊S3 and Q=C2
dρLabelID
C2×C6×C3⋊S372C2xC6xC3:S3216,175

Semidirect products G=N:Q with N=C6×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×C3⋊S3)⋊1C2 = C3×C3⋊D12φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3):1C2216,122
(C6×C3⋊S3)⋊2C2 = C336D4φ: C2/C1C2 ⊆ Out C6×C3⋊S372(C6xC3:S3):2C2216,127
(C6×C3⋊S3)⋊3C2 = C338D4φ: C2/C1C2 ⊆ Out C6×C3⋊S336(C6xC3:S3):3C2216,129
(C6×C3⋊S3)⋊4C2 = C339D4φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3):4C2216,132
(C6×C3⋊S3)⋊5C2 = C3×C12⋊S3φ: C2/C1C2 ⊆ Out C6×C3⋊S372(C6xC3:S3):5C2216,142
(C6×C3⋊S3)⋊6C2 = C3×C327D4φ: C2/C1C2 ⊆ Out C6×C3⋊S336(C6xC3:S3):6C2216,144
(C6×C3⋊S3)⋊7C2 = S32×C6φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3):7C2216,170
(C6×C3⋊S3)⋊8C2 = C2×S3×C3⋊S3φ: C2/C1C2 ⊆ Out C6×C3⋊S336(C6xC3:S3):8C2216,171
(C6×C3⋊S3)⋊9C2 = C2×C324D6φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3):9C2216,172

Non-split extensions G=N.Q with N=C6×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×C3⋊S3).1C2 = C3×C6.D6φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3).1C2216,120
(C6×C3⋊S3).2C2 = Dic3×C3⋊S3φ: C2/C1C2 ⊆ Out C6×C3⋊S372(C6xC3:S3).2C2216,125
(C6×C3⋊S3).3C2 = C339(C2×C4)φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3).3C2216,131
(C6×C3⋊S3).4C2 = C6×C32⋊C4φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3).4C2216,168
(C6×C3⋊S3).5C2 = C2×C33⋊C4φ: C2/C1C2 ⊆ Out C6×C3⋊S3244(C6xC3:S3).5C2216,169
(C6×C3⋊S3).6C2 = C12×C3⋊S3φ: trivial image72(C6xC3:S3).6C2216,141

׿
×
𝔽