Copied to
clipboard

G = C3xC12:S3order 216 = 23·33

Direct product of C3 and C12:S3

direct product, metabelian, supersoluble, monomial

Aliases: C3xC12:S3, C33:11D4, C32:7D12, C12:1(C3xS3), (C3xC12):5C6, (C3xC12):6S3, C3:1(C3xD12), C12:3(C3:S3), C6.26(S3xC6), (C3xC6).59D6, C32:8(C3xD4), (C32xC12):3C2, (C32xC6).23C22, C4:(C3xC3:S3), (C6xC3:S3):5C2, (C2xC3:S3):5C6, C2.4(C6xC3:S3), C6.24(C2xC3:S3), (C3xC6).31(C2xC6), SmallGroup(216,142)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xC12:S3
C1C3C32C3xC6C32xC6C6xC3:S3 — C3xC12:S3
C32C3xC6 — C3xC12:S3
C1C6C12

Generators and relations for C3xC12:S3
 G = < a,b,c,d | a3=b12=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 392 in 120 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, D4, C32, C32, C32, C12, C12, C12, D6, C2xC6, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, D12, C3xD4, C33, C3xC12, C3xC12, C3xC12, S3xC6, C2xC3:S3, C3xC3:S3, C32xC6, C3xD12, C12:S3, C32xC12, C6xC3:S3, C3xC12:S3
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2xC6, C3xS3, C3:S3, D12, C3xD4, S3xC6, C2xC3:S3, C3xC3:S3, C3xD12, C12:S3, C6xC3:S3, C3xC12:S3

Smallest permutation representation of C3xC12:S3
On 72 points
Generators in S72
(1 50 67)(2 51 68)(3 52 69)(4 53 70)(5 54 71)(6 55 72)(7 56 61)(8 57 62)(9 58 63)(10 59 64)(11 60 65)(12 49 66)(13 29 48)(14 30 37)(15 31 38)(16 32 39)(17 33 40)(18 34 41)(19 35 42)(20 36 43)(21 25 44)(22 26 45)(23 27 46)(24 28 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 54 63)(2 55 64)(3 56 65)(4 57 66)(5 58 67)(6 59 68)(7 60 69)(8 49 70)(9 50 71)(10 51 72)(11 52 61)(12 53 62)(13 40 25)(14 41 26)(15 42 27)(16 43 28)(17 44 29)(18 45 30)(19 46 31)(20 47 32)(21 48 33)(22 37 34)(23 38 35)(24 39 36)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 48)(7 47)(8 46)(9 45)(10 44)(11 43)(12 42)(13 55)(14 54)(15 53)(16 52)(17 51)(18 50)(19 49)(20 60)(21 59)(22 58)(23 57)(24 56)(25 64)(26 63)(27 62)(28 61)(29 72)(30 71)(31 70)(32 69)(33 68)(34 67)(35 66)(36 65)

G:=sub<Sym(72)| (1,50,67)(2,51,68)(3,52,69)(4,53,70)(5,54,71)(6,55,72)(7,56,61)(8,57,62)(9,58,63)(10,59,64)(11,60,65)(12,49,66)(13,29,48)(14,30,37)(15,31,38)(16,32,39)(17,33,40)(18,34,41)(19,35,42)(20,36,43)(21,25,44)(22,26,45)(23,27,46)(24,28,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,54,63)(2,55,64)(3,56,65)(4,57,66)(5,58,67)(6,59,68)(7,60,69)(8,49,70)(9,50,71)(10,51,72)(11,52,61)(12,53,62)(13,40,25)(14,41,26)(15,42,27)(16,43,28)(17,44,29)(18,45,30)(19,46,31)(20,47,32)(21,48,33)(22,37,34)(23,38,35)(24,39,36), (1,41)(2,40)(3,39)(4,38)(5,37)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,60)(21,59)(22,58)(23,57)(24,56)(25,64)(26,63)(27,62)(28,61)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)>;

G:=Group( (1,50,67)(2,51,68)(3,52,69)(4,53,70)(5,54,71)(6,55,72)(7,56,61)(8,57,62)(9,58,63)(10,59,64)(11,60,65)(12,49,66)(13,29,48)(14,30,37)(15,31,38)(16,32,39)(17,33,40)(18,34,41)(19,35,42)(20,36,43)(21,25,44)(22,26,45)(23,27,46)(24,28,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,54,63)(2,55,64)(3,56,65)(4,57,66)(5,58,67)(6,59,68)(7,60,69)(8,49,70)(9,50,71)(10,51,72)(11,52,61)(12,53,62)(13,40,25)(14,41,26)(15,42,27)(16,43,28)(17,44,29)(18,45,30)(19,46,31)(20,47,32)(21,48,33)(22,37,34)(23,38,35)(24,39,36), (1,41)(2,40)(3,39)(4,38)(5,37)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,60)(21,59)(22,58)(23,57)(24,56)(25,64)(26,63)(27,62)(28,61)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65) );

G=PermutationGroup([[(1,50,67),(2,51,68),(3,52,69),(4,53,70),(5,54,71),(6,55,72),(7,56,61),(8,57,62),(9,58,63),(10,59,64),(11,60,65),(12,49,66),(13,29,48),(14,30,37),(15,31,38),(16,32,39),(17,33,40),(18,34,41),(19,35,42),(20,36,43),(21,25,44),(22,26,45),(23,27,46),(24,28,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,54,63),(2,55,64),(3,56,65),(4,57,66),(5,58,67),(6,59,68),(7,60,69),(8,49,70),(9,50,71),(10,51,72),(11,52,61),(12,53,62),(13,40,25),(14,41,26),(15,42,27),(16,43,28),(17,44,29),(18,45,30),(19,46,31),(20,47,32),(21,48,33),(22,37,34),(23,38,35),(24,39,36)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,48),(7,47),(8,46),(9,45),(10,44),(11,43),(12,42),(13,55),(14,54),(15,53),(16,52),(17,51),(18,50),(19,49),(20,60),(21,59),(22,58),(23,57),(24,56),(25,64),(26,63),(27,62),(28,61),(29,72),(30,71),(31,70),(32,69),(33,68),(34,67),(35,66),(36,65)]])

C3xC12:S3 is a maximal subgroup of
C33:6D8  C33:8D8  C33:13SD16  C33:16SD16  C33:9D8  C33:18SD16  C3xS3xD12  C12.39S32  C12.57S32  C12:S32  C12:S3:12S3  C12:3S32  C3xD4xC3:S3

63 conjugacy classes

class 1 2A2B2C3A3B3C···3N 4 6A6B6C···6N6O6P6Q6R12A···12Z
order1222333···34666···6666612···12
size111818112···22112···2181818182···2

63 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C3C6C6S3D4D6C3xS3D12C3xD4S3xC6C3xD12
kernelC3xC12:S3C32xC12C6xC3:S3C12:S3C3xC12C2xC3:S3C3xC12C33C3xC6C12C32C32C6C3
# reps112224414882816

Matrix representation of C3xC12:S3 in GL4(F13) generated by

1000
0100
0090
0009
,
101000
3700
0080
0005
,
12100
12000
0090
0003
,
101000
7300
0001
0010
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[10,3,0,0,10,7,0,0,0,0,8,0,0,0,0,5],[12,12,0,0,1,0,0,0,0,0,9,0,0,0,0,3],[10,7,0,0,10,3,0,0,0,0,0,1,0,0,1,0] >;

C3xC12:S3 in GAP, Magma, Sage, TeX

C_3\times C_{12}\rtimes S_3
% in TeX

G:=Group("C3xC12:S3");
// GroupNames label

G:=SmallGroup(216,142);
// by ID

G=gap.SmallGroup(216,142);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,1444,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<