Extensions 1→N→G→Q→1 with N=C2×C26 and Q=C4

Direct product G=N×Q with N=C2×C26 and Q=C4
dρLabelID
C22×C52208C2^2xC52208,45

Semidirect products G=N:Q with N=C2×C26 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C26)⋊1C4 = D13.D4φ: C4/C1C4 ⊆ Aut C2×C26524+(C2xC26):1C4208,34
(C2×C26)⋊2C4 = C22×C13⋊C4φ: C4/C1C4 ⊆ Aut C2×C2652(C2xC26):2C4208,49
(C2×C26)⋊3C4 = C13×C22⋊C4φ: C4/C2C2 ⊆ Aut C2×C26104(C2xC26):3C4208,21
(C2×C26)⋊4C4 = C23.D13φ: C4/C2C2 ⊆ Aut C2×C26104(C2xC26):4C4208,19
(C2×C26)⋊5C4 = C22×Dic13φ: C4/C2C2 ⊆ Aut C2×C26208(C2xC26):5C4208,43

Non-split extensions G=N.Q with N=C2×C26 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C26).1C4 = C2×C13⋊C8φ: C4/C1C4 ⊆ Aut C2×C26208(C2xC26).1C4208,32
(C2×C26).2C4 = C13⋊M4(2)φ: C4/C1C4 ⊆ Aut C2×C261044-(C2xC26).2C4208,33
(C2×C26).3C4 = C13×M4(2)φ: C4/C2C2 ⊆ Aut C2×C261042(C2xC26).3C4208,24
(C2×C26).4C4 = C2×C132C8φ: C4/C2C2 ⊆ Aut C2×C26208(C2xC26).4C4208,9
(C2×C26).5C4 = C52.4C4φ: C4/C2C2 ⊆ Aut C2×C261042(C2xC26).5C4208,10

׿
×
𝔽