Extensions 1→N→G→Q→1 with N=C2×C6 and Q=D9

Direct product G=N×Q with N=C2×C6 and Q=D9
dρLabelID
C2×C6×D972C2xC6xD9216,108

Semidirect products G=N:Q with N=C2×C6 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1D9 = C3×C3.S4φ: D9/C3S3 ⊆ Aut C2×C6366(C2xC6):1D9216,91
(C2×C6)⋊2D9 = C32.3S4φ: D9/C3S3 ⊆ Aut C2×C654(C2xC6):2D9216,94
(C2×C6)⋊3D9 = C3×C9⋊D4φ: D9/C9C2 ⊆ Aut C2×C6362(C2xC6):3D9216,57
(C2×C6)⋊4D9 = C6.D18φ: D9/C9C2 ⊆ Aut C2×C6108(C2xC6):4D9216,70
(C2×C6)⋊5D9 = C22×C9⋊S3φ: D9/C9C2 ⊆ Aut C2×C6108(C2xC6):5D9216,112

Non-split extensions G=N.Q with N=C2×C6 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C6).D9 = C9.S4φ: D9/C3S3 ⊆ Aut C2×C6546+(C2xC6).D9216,21
(C2×C6).2D9 = C2×Dic27φ: D9/C9C2 ⊆ Aut C2×C6216(C2xC6).2D9216,7
(C2×C6).3D9 = C27⋊D4φ: D9/C9C2 ⊆ Aut C2×C61082(C2xC6).3D9216,8
(C2×C6).4D9 = C22×D27φ: D9/C9C2 ⊆ Aut C2×C6108(C2xC6).4D9216,23
(C2×C6).5D9 = C2×C9⋊Dic3φ: D9/C9C2 ⊆ Aut C2×C6216(C2xC6).5D9216,69
(C2×C6).6D9 = C6×Dic9central extension (φ=1)72(C2xC6).6D9216,55

׿
×
𝔽