Copied to
clipboard

G = C3×C3.S4order 216 = 23·33

Direct product of C3 and C3.S4

direct product, non-abelian, soluble, monomial

Aliases: C3×C3.S4, C32.2S4, C62.6S3, (C2×C6)⋊1D9, C22⋊(C3×D9), C3.A44C6, C3.2(C3×S4), (C3×C3.A4)⋊2C2, (C2×C6).3(C3×S3), SmallGroup(216,91)

Series: Derived Chief Lower central Upper central

C1C22C3.A4 — C3×C3.S4
C1C22C2×C6C3.A4C3×C3.A4 — C3×C3.S4
C3.A4 — C3×C3.S4
C1C3

Generators and relations for C3×C3.S4
 G = < a,b,c,d,e,f | a3=b3=c2=d2=f2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=b-1e2 >

3C2
18C2
2C3
9C22
9C4
3C6
3C6
6C6
6S3
18C6
4C9
8C9
9D4
2C2×C6
3D6
3Dic3
9C12
9C2×C6
3C3×C6
4D9
6C3×S3
4C3×C9
3C3⋊D4
9C3×D4
2C3.A4
3S3×C6
3C3×Dic3
4C3×D9
3C3×C3⋊D4

Character table of C3×C3.S4

 class 12A2B3A3B3C3D3E46A6B6C6D6E6F6G9A9B9C9D9E9F9G9H9I12A12B
 size 131811222183366618188888888881818
ρ1111111111111111111111111111    trivial
ρ211-111111-111111-1-1111111111-1-1    linear of order 2
ρ3111ζ32ζ3ζ3ζ3211ζ3ζ32ζ32ζ31ζ3ζ32ζ32ζ32ζ3ζ3ζ3111ζ32ζ32ζ3    linear of order 3
ρ4111ζ3ζ32ζ32ζ311ζ32ζ3ζ3ζ321ζ32ζ3ζ3ζ3ζ32ζ32ζ32111ζ3ζ3ζ32    linear of order 3
ρ511-1ζ3ζ32ζ32ζ31-1ζ32ζ3ζ3ζ321ζ6ζ65ζ3ζ3ζ32ζ32ζ32111ζ3ζ65ζ6    linear of order 6
ρ611-1ζ32ζ3ζ3ζ321-1ζ3ζ32ζ32ζ31ζ65ζ6ζ32ζ32ζ3ζ3ζ3111ζ32ζ6ζ65    linear of order 6
ρ72202222202222200-1-1-1-1-1-1-1-1-100    orthogonal lifted from S3
ρ822022-1-1-1022-1-1-100ζ9594ζ9792ζ989ζ9792ζ9594ζ9792ζ9594ζ989ζ98900    orthogonal lifted from D9
ρ922022-1-1-1022-1-1-100ζ9792ζ989ζ9594ζ989ζ9792ζ989ζ9792ζ9594ζ959400    orthogonal lifted from D9
ρ1022022-1-1-1022-1-1-100ζ989ζ9594ζ9792ζ9594ζ989ζ9594ζ989ζ9792ζ979200    orthogonal lifted from D9
ρ11220-1--3-1+-3-1+-3-1--320-1+-3-1--3-1--3-1+-3200ζ6ζ6ζ65ζ65ζ65-1-1-1ζ600    complex lifted from C3×S3
ρ12220-1--3-1+-3ζ65ζ6-10-1+-3-1--3ζ6ζ65-100ζ929ζ9894ζ9492ζ959ζ9897ζ9792ζ9594ζ989ζ979500    complex lifted from C3×D9
ρ13220-1+-3-1--3ζ6ζ65-10-1--3-1+-3ζ65ζ6-100ζ959ζ9492ζ929ζ9795ζ9894ζ989ζ9792ζ9594ζ989700    complex lifted from C3×D9
ρ14220-1+-3-1--3-1--3-1+-320-1--3-1+-3-1+-3-1--3200ζ65ζ65ζ6ζ6ζ6-1-1-1ζ6500    complex lifted from C3×S3
ρ15220-1--3-1+-3ζ65ζ6-10-1+-3-1--3ζ6ζ65-100ζ9795ζ929ζ959ζ9897ζ9492ζ9594ζ989ζ9792ζ989400    complex lifted from C3×D9
ρ16220-1+-3-1--3ζ6ζ65-10-1--3-1+-3ζ65ζ6-100ζ9897ζ959ζ9795ζ9894ζ929ζ9792ζ9594ζ989ζ949200    complex lifted from C3×D9
ρ17220-1+-3-1--3ζ6ζ65-10-1--3-1+-3ζ65ζ6-100ζ9492ζ9897ζ9894ζ929ζ9795ζ9594ζ989ζ9792ζ95900    complex lifted from C3×D9
ρ18220-1--3-1+-3ζ65ζ6-10-1+-3-1--3ζ6ζ65-100ζ9894ζ9795ζ9897ζ9492ζ959ζ989ζ9792ζ9594ζ92900    complex lifted from C3×D9
ρ193-1133333-1-1-1-1-1-111000000000-1-1    orthogonal lifted from S4
ρ203-1-1333331-1-1-1-1-1-1-100000000011    orthogonal lifted from S4
ρ213-1-1-3-3-3/2-3+3-3/2-3+3-3/2-3-3-3/231ζ65ζ6ζ6ζ65-1ζ65ζ6000000000ζ32ζ3    complex lifted from C3×S4
ρ223-1-1-3+3-3/2-3-3-3/2-3-3-3/2-3+3-3/231ζ6ζ65ζ65ζ6-1ζ6ζ65000000000ζ3ζ32    complex lifted from C3×S4
ρ233-11-3+3-3/2-3-3-3/2-3-3-3/2-3+3-3/23-1ζ6ζ65ζ65ζ6-1ζ32ζ3000000000ζ65ζ6    complex lifted from C3×S4
ρ243-11-3-3-3/2-3+3-3/2-3+3-3/2-3-3-3/23-1ζ65ζ6ζ6ζ65-1ζ3ζ32000000000ζ6ζ65    complex lifted from C3×S4
ρ256-2066-3-3-30-2-21110000000000000    orthogonal lifted from C3.S4
ρ266-20-3+3-3-3-3-33+3-3/23-3-3/2-301+-31--3ζ3ζ3210000000000000    complex faithful
ρ276-20-3-3-3-3+3-33-3-3/23+3-3/2-301--31+-3ζ32ζ310000000000000    complex faithful

Smallest permutation representation of C3×C3.S4
On 36 points
Generators in S36
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 27)(3 20)(4 21)(6 23)(7 24)(9 26)(11 30)(12 31)(14 33)(15 34)(17 36)(18 28)
(1 27)(2 19)(4 21)(5 22)(7 24)(8 25)(10 29)(12 31)(13 32)(15 34)(16 35)(18 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 29)(2 28)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)

G:=sub<Sym(36)| (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,27)(3,20)(4,21)(6,23)(7,24)(9,26)(11,30)(12,31)(14,33)(15,34)(17,36)(18,28), (1,27)(2,19)(4,21)(5,22)(7,24)(8,25)(10,29)(12,31)(13,32)(15,34)(16,35)(18,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,29)(2,28)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;

G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,27)(3,20)(4,21)(6,23)(7,24)(9,26)(11,30)(12,31)(14,33)(15,34)(17,36)(18,28), (1,27)(2,19)(4,21)(5,22)(7,24)(8,25)(10,29)(12,31)(13,32)(15,34)(16,35)(18,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,29)(2,28)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );

G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,27),(3,20),(4,21),(6,23),(7,24),(9,26),(11,30),(12,31),(14,33),(15,34),(17,36),(18,28)], [(1,27),(2,19),(4,21),(5,22),(7,24),(8,25),(10,29),(12,31),(13,32),(15,34),(16,35),(18,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,29),(2,28),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])

Matrix representation of C3×C3.S4 in GL7(𝔽37)

1000000
0100000
00100000
00010000
0000100
0000010
0000001
,
26000000
101000000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000100
00000360
00000036
,
1000000
0100000
0010000
0001000
00003600
0000010
00000036
,
16000000
1700000
00212000
002134000
0000001
0000100
0000010
,
12800000
03600000
003525000
00282000
0000001
0000010
0000100

G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[26,10,0,0,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36],[16,1,0,0,0,0,0,0,7,0,0,0,0,0,0,0,2,21,0,0,0,0,0,12,34,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,28,36,0,0,0,0,0,0,0,35,28,0,0,0,0,0,25,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0] >;

C3×C3.S4 in GAP, Magma, Sage, TeX

C_3\times C_3.S_4
% in TeX

G:=Group("C3xC3.S4");
// GroupNames label

G:=SmallGroup(216,91);
// by ID

G=gap.SmallGroup(216,91);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,542,122,867,3244,556,1949,989]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^2=f^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=b^-1*e^2>;
// generators/relations

Export

Subgroup lattice of C3×C3.S4 in TeX
Character table of C3×C3.S4 in TeX

׿
×
𝔽