Copied to
clipboard

G = C9.S4order 216 = 23·33

The non-split extension by C9 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C9.S4, C22⋊D27, C9.A4⋊C2, (C2×C6).D9, (C2×C18).S3, C3.(C3.S4), SmallGroup(216,21)

Series: Derived Chief Lower central Upper central

C1C22C9.A4 — C9.S4
C1C22C2×C6C2×C18C9.A4 — C9.S4
C9.A4 — C9.S4
C1

Generators and relations for C9.S4
 G = < a,b,c,d,e | a9=b2=c2=e2=1, d3=a, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=a-1d2 >

3C2
54C2
27C4
27C22
3C6
18S3
27D4
9D6
9Dic3
3C18
6D9
4C27
9C3⋊D4
3D18
3Dic9
4D27
3C9⋊D4

Character table of C9.S4

 class 12A2B3469A9B9C18A18B18C27A27B27C27D27E27F27G27H27I
 size 13542546222666888888888
ρ1111111111111111111111    trivial
ρ211-11-11111111111111111    linear of order 2
ρ3220202222222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ4220202-1-1-1-1-1-1ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792    orthogonal lifted from D9
ρ5220202-1-1-1-1-1-1ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989    orthogonal lifted from D9
ρ6220202-1-1-1-1-1-1ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594    orthogonal lifted from D9
ρ7220-10-1ζ27152712ζ2724273ζ2721276ζ2721276ζ27152712ζ2724273ζ2725272ζ27142713ζ2722275ζ2723274ζ2719278ζ272627ζ27172710ζ2720277ζ27162711    orthogonal lifted from D27
ρ8220-10-1ζ2721276ζ27152712ζ2724273ζ2724273ζ2721276ζ27152712ζ272627ζ2720277ζ27162711ζ2725272ζ2723274ζ27142713ζ2722275ζ27172710ζ2719278    orthogonal lifted from D27
ρ9220-10-1ζ2724273ζ2721276ζ27152712ζ27152712ζ2724273ζ2721276ζ27142713ζ27172710ζ2719278ζ272627ζ2725272ζ2720277ζ27162711ζ2722275ζ2723274    orthogonal lifted from D27
ρ10220-10-1ζ27152712ζ2724273ζ2721276ζ2721276ζ27152712ζ2724273ζ2720277ζ2722275ζ2723274ζ27142713ζ272627ζ27172710ζ2719278ζ27162711ζ2725272    orthogonal lifted from D27
ρ11220-10-1ζ2721276ζ27152712ζ2724273ζ2724273ζ2721276ζ27152712ζ2719278ζ2725272ζ2720277ζ27162711ζ2722275ζ2723274ζ27142713ζ272627ζ27172710    orthogonal lifted from D27
ρ12220-10-1ζ27152712ζ2724273ζ2721276ζ2721276ζ27152712ζ2724273ζ27162711ζ2723274ζ27142713ζ2722275ζ27172710ζ2719278ζ272627ζ2725272ζ2720277    orthogonal lifted from D27
ρ13220-10-1ζ2724273ζ2721276ζ27152712ζ27152712ζ2724273ζ2721276ζ2722275ζ2719278ζ272627ζ27172710ζ2720277ζ27162711ζ2725272ζ2723274ζ27142713    orthogonal lifted from D27
ρ14220-10-1ζ2724273ζ2721276ζ27152712ζ27152712ζ2724273ζ2721276ζ2723274ζ272627ζ27172710ζ2719278ζ27162711ζ2725272ζ2720277ζ27142713ζ2722275    orthogonal lifted from D27
ρ15220-10-1ζ2721276ζ27152712ζ2724273ζ2724273ζ2721276ζ27152712ζ27172710ζ27162711ζ2725272ζ2720277ζ27142713ζ2722275ζ2723274ζ2719278ζ272627    orthogonal lifted from D27
ρ163-113-1-1333-1-1-1000000000    orthogonal lifted from S4
ρ173-1-131-1333-1-1-1000000000    orthogonal lifted from S4
ρ186-2060-2-3-3-3111000000000    orthogonal lifted from C3.S4
ρ196-20-30198+3ζ997+3ζ9295+3ζ9495949899792000000000    orthogonal faithful
ρ206-20-30197+3ζ9295+3ζ9498+3ζ998997929594000000000    orthogonal faithful
ρ216-20-30195+3ζ9498+3ζ997+3ζ9297929594989000000000    orthogonal faithful

Smallest permutation representation of C9.S4
On 54 points
Generators in S54
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)
(1 46)(2 47)(4 49)(5 50)(7 52)(8 53)(10 28)(11 29)(13 31)(14 32)(16 34)(17 35)(19 37)(20 38)(22 40)(23 41)(25 43)(26 44)
(2 47)(3 48)(5 50)(6 51)(8 53)(9 54)(11 29)(12 30)(14 32)(15 33)(17 35)(18 36)(20 38)(21 39)(23 41)(24 42)(26 44)(27 45)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 46)(2 45)(3 44)(4 43)(5 42)(6 41)(7 40)(8 39)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 54)(21 53)(22 52)(23 51)(24 50)(25 49)(26 48)(27 47)

G:=sub<Sym(54)| (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (1,46)(2,47)(4,49)(5,50)(7,52)(8,53)(10,28)(11,29)(13,31)(14,32)(16,34)(17,35)(19,37)(20,38)(22,40)(23,41)(25,43)(26,44), (2,47)(3,48)(5,50)(6,51)(8,53)(9,54)(11,29)(12,30)(14,32)(15,33)(17,35)(18,36)(20,38)(21,39)(23,41)(24,42)(26,44)(27,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,46)(2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)>;

G:=Group( (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (1,46)(2,47)(4,49)(5,50)(7,52)(8,53)(10,28)(11,29)(13,31)(14,32)(16,34)(17,35)(19,37)(20,38)(22,40)(23,41)(25,43)(26,44), (2,47)(3,48)(5,50)(6,51)(8,53)(9,54)(11,29)(12,30)(14,32)(15,33)(17,35)(18,36)(20,38)(21,39)(23,41)(24,42)(26,44)(27,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,46)(2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47) );

G=PermutationGroup([[(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54)], [(1,46),(2,47),(4,49),(5,50),(7,52),(8,53),(10,28),(11,29),(13,31),(14,32),(16,34),(17,35),(19,37),(20,38),(22,40),(23,41),(25,43),(26,44)], [(2,47),(3,48),(5,50),(6,51),(8,53),(9,54),(11,29),(12,30),(14,32),(15,33),(17,35),(18,36),(20,38),(21,39),(23,41),(24,42),(26,44),(27,45)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,46),(2,45),(3,44),(4,43),(5,42),(6,41),(7,40),(8,39),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,54),(21,53),(22,52),(23,51),(24,50),(25,49),(26,48),(27,47)]])

C9.S4 is a maximal quotient of   Q8.D27  Q8⋊D27  C18.S4

Matrix representation of C9.S4 in GL5(𝔽109)

3282000
2759000
00100
00010
00001
,
10000
01000
0010800
0001080
00001
,
10000
01000
00100
0001080
0000108
,
177000
10210000
00001
00100
00010
,
10000
108108000
0010800
0000108
0001080

G:=sub<GL(5,GF(109))| [32,27,0,0,0,82,59,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,108,0,0,0,0,0,108,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,108,0,0,0,0,0,108],[17,102,0,0,0,7,10,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[1,108,0,0,0,0,108,0,0,0,0,0,108,0,0,0,0,0,0,108,0,0,0,108,0] >;

C9.S4 in GAP, Magma, Sage, TeX

C_9.S_4
% in TeX

G:=Group("C9.S4");
// GroupNames label

G:=SmallGroup(216,21);
// by ID

G=gap.SmallGroup(216,21);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,121,187,542,122,867,3244,1630,1949,2927]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^2=c^2=e^2=1,d^3=a,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=a^-1*d^2>;
// generators/relations

Export

Subgroup lattice of C9.S4 in TeX
Character table of C9.S4 in TeX

׿
×
𝔽