extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1Dic3 = He3⋊3C8 | φ: Dic3/C2 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).1Dic3 | 216,14 |
(C3×C6).2Dic3 = C9⋊C24 | φ: Dic3/C2 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).2Dic3 | 216,15 |
(C3×C6).3Dic3 = He3⋊4C8 | φ: Dic3/C2 → S3 ⊆ Aut C3×C6 | 72 | 3 | (C3xC6).3Dic3 | 216,17 |
(C3×C6).4Dic3 = C2×C9⋊C12 | φ: Dic3/C2 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).4Dic3 | 216,61 |
(C3×C6).5Dic3 = C33⋊4C8 | φ: Dic3/C3 → C4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).5Dic3 | 216,118 |
(C3×C6).6Dic3 = C3×C9⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).6Dic3 | 216,12 |
(C3×C6).7Dic3 = C36.S3 | φ: Dic3/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).7Dic3 | 216,16 |
(C3×C6).8Dic3 = C6×Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).8Dic3 | 216,55 |
(C3×C6).9Dic3 = C2×C9⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).9Dic3 | 216,69 |
(C3×C6).10Dic3 = C3×C32⋊4C8 | φ: Dic3/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).10Dic3 | 216,83 |
(C3×C6).11Dic3 = C33⋊7C8 | φ: Dic3/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).11Dic3 | 216,84 |
(C3×C6).12Dic3 = C32×C3⋊C8 | central extension (φ=1) | 72 | | (C3xC6).12Dic3 | 216,82 |