Extensions 1→N→G→Q→1 with N=C3×C6 and Q=Dic3

Direct product G=N×Q with N=C3×C6 and Q=Dic3
dρLabelID
Dic3×C3×C672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C3×C6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊1Dic3 = C2×C32⋊C12φ: Dic3/C2S3 ⊆ Aut C3×C672(C3xC6):1Dic3216,59
(C3×C6)⋊2Dic3 = C2×He33C4φ: Dic3/C2S3 ⊆ Aut C3×C672(C3xC6):2Dic3216,71
(C3×C6)⋊3Dic3 = C2×C33⋊C4φ: Dic3/C3C4 ⊆ Aut C3×C6244(C3xC6):3Dic3216,169
(C3×C6)⋊4Dic3 = C6×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3×C672(C3xC6):4Dic3216,143
(C3×C6)⋊5Dic3 = C2×C335C4φ: Dic3/C6C2 ⊆ Aut C3×C6216(C3xC6):5Dic3216,148

Non-split extensions G=N.Q with N=C3×C6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C3×C6).1Dic3 = He33C8φ: Dic3/C2S3 ⊆ Aut C3×C6726(C3xC6).1Dic3216,14
(C3×C6).2Dic3 = C9⋊C24φ: Dic3/C2S3 ⊆ Aut C3×C6726(C3xC6).2Dic3216,15
(C3×C6).3Dic3 = He34C8φ: Dic3/C2S3 ⊆ Aut C3×C6723(C3xC6).3Dic3216,17
(C3×C6).4Dic3 = C2×C9⋊C12φ: Dic3/C2S3 ⊆ Aut C3×C672(C3xC6).4Dic3216,61
(C3×C6).5Dic3 = C334C8φ: Dic3/C3C4 ⊆ Aut C3×C6244(C3xC6).5Dic3216,118
(C3×C6).6Dic3 = C3×C9⋊C8φ: Dic3/C6C2 ⊆ Aut C3×C6722(C3xC6).6Dic3216,12
(C3×C6).7Dic3 = C36.S3φ: Dic3/C6C2 ⊆ Aut C3×C6216(C3xC6).7Dic3216,16
(C3×C6).8Dic3 = C6×Dic9φ: Dic3/C6C2 ⊆ Aut C3×C672(C3xC6).8Dic3216,55
(C3×C6).9Dic3 = C2×C9⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3×C6216(C3xC6).9Dic3216,69
(C3×C6).10Dic3 = C3×C324C8φ: Dic3/C6C2 ⊆ Aut C3×C672(C3xC6).10Dic3216,83
(C3×C6).11Dic3 = C337C8φ: Dic3/C6C2 ⊆ Aut C3×C6216(C3xC6).11Dic3216,84
(C3×C6).12Dic3 = C32×C3⋊C8central extension (φ=1)72(C3xC6).12Dic3216,82

׿
×
𝔽