Copied to
clipboard

G = He3:3C8order 216 = 23·33

1st semidirect product of He3 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial

Aliases: He3:3C8, C32:2C24, (C3xC6).C12, C32:4C8:C3, C12.9(C3xS3), C32:2(C3:C8), (C3xC12).2C6, (C3xC12).5S3, C2.(C32:C12), (C2xHe3).2C4, (C4xHe3).3C2, (C3xC6).1Dic3, C6.2(C3xDic3), C4.2(C32:C6), C3.2(C3xC3:C8), SmallGroup(216,14)

Series: Derived Chief Lower central Upper central

C1C32 — He3:3C8
C1C3C32C3xC6C3xC12C4xHe3 — He3:3C8
C32 — He3:3C8
C1C4

Generators and relations for He3:3C8
 G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, cac-1=ab-1, dad-1=a-1, bc=cb, dbd-1=b-1, cd=dc >

Subgroups: 92 in 34 conjugacy classes, 17 normal (all characteristic)
Quotients: C1, C2, C3, C4, S3, C6, C8, Dic3, C12, C3xS3, C3:C8, C24, C3xDic3, C32:C6, C3xC3:C8, C32:C12, He3:3C8
3C3
3C3
6C3
3C6
3C6
6C6
2C32
9C8
3C12
3C12
6C12
2C3xC6
3C3:C8
9C24
9C3:C8
2C3xC12
3C3xC3:C8

Smallest permutation representation of He3:3C8
On 72 points
Generators in S72
(1 68 47)(2 48 69)(3 70 41)(4 42 71)(5 72 43)(6 44 65)(7 66 45)(8 46 67)(9 17 31)(10 32 18)(11 19 25)(12 26 20)(13 21 27)(14 28 22)(15 23 29)(16 30 24)(33 54 57)(34 58 55)(35 56 59)(36 60 49)(37 50 61)(38 62 51)(39 52 63)(40 64 53)
(1 52 31)(2 32 53)(3 54 25)(4 26 55)(5 56 27)(6 28 49)(7 50 29)(8 30 51)(9 68 63)(10 64 69)(11 70 57)(12 58 71)(13 72 59)(14 60 65)(15 66 61)(16 62 67)(17 47 39)(18 40 48)(19 41 33)(20 34 42)(21 43 35)(22 36 44)(23 45 37)(24 38 46)
(1 47 9)(2 48 10)(3 41 11)(4 42 12)(5 43 13)(6 44 14)(7 45 15)(8 46 16)(17 63 31)(18 64 32)(19 57 25)(20 58 26)(21 59 27)(22 60 28)(23 61 29)(24 62 30)(33 70 54)(34 71 55)(35 72 56)(36 65 49)(37 66 50)(38 67 51)(39 68 52)(40 69 53)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,68,47)(2,48,69)(3,70,41)(4,42,71)(5,72,43)(6,44,65)(7,66,45)(8,46,67)(9,17,31)(10,32,18)(11,19,25)(12,26,20)(13,21,27)(14,28,22)(15,23,29)(16,30,24)(33,54,57)(34,58,55)(35,56,59)(36,60,49)(37,50,61)(38,62,51)(39,52,63)(40,64,53), (1,52,31)(2,32,53)(3,54,25)(4,26,55)(5,56,27)(6,28,49)(7,50,29)(8,30,51)(9,68,63)(10,64,69)(11,70,57)(12,58,71)(13,72,59)(14,60,65)(15,66,61)(16,62,67)(17,47,39)(18,40,48)(19,41,33)(20,34,42)(21,43,35)(22,36,44)(23,45,37)(24,38,46), (1,47,9)(2,48,10)(3,41,11)(4,42,12)(5,43,13)(6,44,14)(7,45,15)(8,46,16)(17,63,31)(18,64,32)(19,57,25)(20,58,26)(21,59,27)(22,60,28)(23,61,29)(24,62,30)(33,70,54)(34,71,55)(35,72,56)(36,65,49)(37,66,50)(38,67,51)(39,68,52)(40,69,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;

G:=Group( (1,68,47)(2,48,69)(3,70,41)(4,42,71)(5,72,43)(6,44,65)(7,66,45)(8,46,67)(9,17,31)(10,32,18)(11,19,25)(12,26,20)(13,21,27)(14,28,22)(15,23,29)(16,30,24)(33,54,57)(34,58,55)(35,56,59)(36,60,49)(37,50,61)(38,62,51)(39,52,63)(40,64,53), (1,52,31)(2,32,53)(3,54,25)(4,26,55)(5,56,27)(6,28,49)(7,50,29)(8,30,51)(9,68,63)(10,64,69)(11,70,57)(12,58,71)(13,72,59)(14,60,65)(15,66,61)(16,62,67)(17,47,39)(18,40,48)(19,41,33)(20,34,42)(21,43,35)(22,36,44)(23,45,37)(24,38,46), (1,47,9)(2,48,10)(3,41,11)(4,42,12)(5,43,13)(6,44,14)(7,45,15)(8,46,16)(17,63,31)(18,64,32)(19,57,25)(20,58,26)(21,59,27)(22,60,28)(23,61,29)(24,62,30)(33,70,54)(34,71,55)(35,72,56)(36,65,49)(37,66,50)(38,67,51)(39,68,52)(40,69,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,68,47),(2,48,69),(3,70,41),(4,42,71),(5,72,43),(6,44,65),(7,66,45),(8,46,67),(9,17,31),(10,32,18),(11,19,25),(12,26,20),(13,21,27),(14,28,22),(15,23,29),(16,30,24),(33,54,57),(34,58,55),(35,56,59),(36,60,49),(37,50,61),(38,62,51),(39,52,63),(40,64,53)], [(1,52,31),(2,32,53),(3,54,25),(4,26,55),(5,56,27),(6,28,49),(7,50,29),(8,30,51),(9,68,63),(10,64,69),(11,70,57),(12,58,71),(13,72,59),(14,60,65),(15,66,61),(16,62,67),(17,47,39),(18,40,48),(19,41,33),(20,34,42),(21,43,35),(22,36,44),(23,45,37),(24,38,46)], [(1,47,9),(2,48,10),(3,41,11),(4,42,12),(5,43,13),(6,44,14),(7,45,15),(8,46,16),(17,63,31),(18,64,32),(19,57,25),(20,58,26),(21,59,27),(22,60,28),(23,61,29),(24,62,30),(33,70,54),(34,71,55),(35,72,56),(36,65,49),(37,66,50),(38,67,51),(39,68,52),(40,69,53)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])

He3:3C8 is a maximal subgroup of
C32:C6:C8  He3:M4(2)  C12.89S32  He3:3M4(2)  He3:3D8  He3:4SD16  He3:5SD16  He3:3Q16  C8xC32:C6  He3:5M4(2)  He3:7M4(2)  He3:8SD16  He3:6D8  He3:6Q16  He3:10SD16
He3:3C8 is a maximal quotient of
He3:3C16

40 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B6A6B6C6D6E6F8A8B8C8D12A12B12C12D12E12F12G···12L24A···24H
order1233333344666666888812121212121212···1224···24
size112336661123366699992233336···69···9

40 irreducible representations

dim11111111222222666
type+++-+-
imageC1C2C3C4C6C8C12C24S3Dic3C3xS3C3:C8C3xDic3C3xC3:C8C32:C6C32:C12He3:3C8
kernelHe3:3C8C4xHe3C32:4C8C2xHe3C3xC12He3C3xC6C32C3xC12C3xC6C12C32C6C3C4C2C1
# reps11222448112224112

Matrix representation of He3:3C8 in GL6(F73)

001000
000100
000010
000001
100000
010000
,
010000
72720000
000100
00727200
000001
00007272
,
000001
00007272
100000
010000
00727200
001000
,
9201164920
116453621164
1164920920
536211641164
9209201164
116411645362

G:=sub<GL(6,GF(73))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,72,0,0,0,0,1,72,0,0,0,0],[9,11,11,53,9,11,20,64,64,62,20,64,11,53,9,11,9,11,64,62,20,64,20,64,9,11,9,11,11,53,20,64,20,64,64,62] >;

He3:3C8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_3C_8
% in TeX

G:=Group("He3:3C8");
// GroupNames label

G:=SmallGroup(216,14);
// by ID

G=gap.SmallGroup(216,14);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,-3,-3,36,50,1444,1450,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of He3:3C8 in TeX

׿
x
:
Z
F
o
wr
Q
<