d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3×C6×C12 | 216 | C3xC6xC12 | 216,150 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C6)⋊C12 = C2×C32⋊C12 | φ: C12/C2 → C6 ⊆ Aut C3×C6 | 72 | (C3xC6):C12 | 216,59 | |
(C3×C6)⋊2C12 = C6×C32⋊C4 | φ: C12/C3 → C4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6):2C12 | 216,168 |
(C3×C6)⋊3C12 = C2×C4×He3 | φ: C12/C4 → C3 ⊆ Aut C3×C6 | 72 | (C3xC6):3C12 | 216,74 | |
(C3×C6)⋊4C12 = Dic3×C3×C6 | φ: C12/C6 → C2 ⊆ Aut C3×C6 | 72 | (C3xC6):4C12 | 216,138 | |
(C3×C6)⋊5C12 = C6×C3⋊Dic3 | φ: C12/C6 → C2 ⊆ Aut C3×C6 | 72 | (C3xC6):5C12 | 216,143 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C6).C12 = He3⋊3C8 | φ: C12/C2 → C6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).C12 | 216,14 |
(C3×C6).2C12 = C3×C32⋊2C8 | φ: C12/C3 → C4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).2C12 | 216,117 |
(C3×C6).3C12 = C8×He3 | φ: C12/C4 → C3 ⊆ Aut C3×C6 | 72 | 3 | (C3xC6).3C12 | 216,19 |
(C3×C6).4C12 = C8×3- 1+2 | φ: C12/C4 → C3 ⊆ Aut C3×C6 | 72 | 3 | (C3xC6).4C12 | 216,20 |
(C3×C6).5C12 = C2×C4×3- 1+2 | φ: C12/C4 → C3 ⊆ Aut C3×C6 | 72 | (C3xC6).5C12 | 216,75 | |
(C3×C6).6C12 = C9×C3⋊C8 | φ: C12/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).6C12 | 216,13 |
(C3×C6).7C12 = Dic3×C18 | φ: C12/C6 → C2 ⊆ Aut C3×C6 | 72 | (C3xC6).7C12 | 216,56 | |
(C3×C6).8C12 = C32×C3⋊C8 | φ: C12/C6 → C2 ⊆ Aut C3×C6 | 72 | (C3xC6).8C12 | 216,82 | |
(C3×C6).9C12 = C3×C32⋊4C8 | φ: C12/C6 → C2 ⊆ Aut C3×C6 | 72 | (C3xC6).9C12 | 216,83 |