Extensions 1→N→G→Q→1 with N=C3×Dic9 and Q=C2

Direct product G=N×Q with N=C3×Dic9 and Q=C2
dρLabelID
C6×Dic972C6xDic9216,55

Semidirect products G=N:Q with N=C3×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic9)⋊1C2 = C18.D6φ: C2/C1C2 ⊆ Out C3×Dic9364+(C3xDic9):1C2216,28
(C3×Dic9)⋊2C2 = S3×Dic9φ: C2/C1C2 ⊆ Out C3×Dic9724-(C3xDic9):2C2216,30
(C3×Dic9)⋊3C2 = C9⋊D12φ: C2/C1C2 ⊆ Out C3×Dic9364+(C3xDic9):3C2216,32
(C3×Dic9)⋊4C2 = C3×C9⋊D4φ: C2/C1C2 ⊆ Out C3×Dic9362(C3xDic9):4C2216,57
(C3×Dic9)⋊5C2 = C12×D9φ: trivial image722(C3xDic9):5C2216,45

Non-split extensions G=N.Q with N=C3×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic9).1C2 = C9⋊Dic6φ: C2/C1C2 ⊆ Out C3×Dic9724-(C3xDic9).1C2216,26
(C3×Dic9).2C2 = C3×Dic18φ: C2/C1C2 ⊆ Out C3×Dic9722(C3xDic9).2C2216,43

׿
×
𝔽