Copied to
clipboard

G = C9⋊D12order 216 = 23·33

The semidirect product of C9 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial

Aliases: D62D9, C92D12, Dic9⋊S3, C18.7D6, C6.7D18, C6.7S32, (C3×C9)⋊3D4, C2.7(S3×D9), (S3×C18)⋊4C2, (S3×C6).3S3, C31(C9⋊D4), (C3×C6).28D6, (C3×Dic9)⋊3C2, (C3×C18).7C22, C3.2(C3⋊D12), C32.3(C3⋊D4), (C2×C9⋊S3)⋊2C2, SmallGroup(216,32)

Series: Derived Chief Lower central Upper central

C1C3×C18 — C9⋊D12
C1C3C32C3×C9C3×C18S3×C18 — C9⋊D12
C3×C9C3×C18 — C9⋊D12
C1C2

Generators and relations for C9⋊D12
 G = < a,b,c | a9=b12=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 362 in 58 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C9, C9, C32, Dic3, C12, D6, D6, C2×C6, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, D12, C3⋊D4, C3×C9, Dic9, D18, C2×C18, C3×Dic3, S3×C6, C2×C3⋊S3, S3×C9, C9⋊S3, C3×C18, C9⋊D4, C3⋊D12, C3×Dic9, S3×C18, C2×C9⋊S3, C9⋊D12
Quotients: C1, C2, C22, S3, D4, D6, D9, D12, C3⋊D4, D18, S32, C9⋊D4, C3⋊D12, S3×D9, C9⋊D12

Smallest permutation representation of C9⋊D12
On 36 points
Generators in S36
(1 26 24 9 34 20 5 30 16)(2 17 31 6 21 35 10 13 27)(3 28 14 11 36 22 7 32 18)(4 19 33 8 23 25 12 15 29)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 31)(14 30)(15 29)(16 28)(17 27)(18 26)(19 25)(20 36)(21 35)(22 34)(23 33)(24 32)

G:=sub<Sym(36)| (1,26,24,9,34,20,5,30,16)(2,17,31,6,21,35,10,13,27)(3,28,14,11,36,22,7,32,18)(4,19,33,8,23,25,12,15,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,36)(21,35)(22,34)(23,33)(24,32)>;

G:=Group( (1,26,24,9,34,20,5,30,16)(2,17,31,6,21,35,10,13,27)(3,28,14,11,36,22,7,32,18)(4,19,33,8,23,25,12,15,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,36)(21,35)(22,34)(23,33)(24,32) );

G=PermutationGroup([[(1,26,24,9,34,20,5,30,16),(2,17,31,6,21,35,10,13,27),(3,28,14,11,36,22,7,32,18),(4,19,33,8,23,25,12,15,29)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,31),(14,30),(15,29),(16,28),(17,27),(18,26),(19,25),(20,36),(21,35),(22,34),(23,33),(24,32)]])

C9⋊D12 is a maximal subgroup of   D12⋊D9  D6.D18  Dic9.D6  D9×D12  Dic3.D18  S3×C9⋊D4  D18⋊D6
C9⋊D12 is a maximal quotient of   C9⋊D24  C36.D6  C18.D12  C9⋊Dic12  Dic9⋊Dic3  C6.18D36  D6⋊Dic9

33 conjugacy classes

class 1 2A2B2C3A3B3C 4 6A6B6C6D6E9A9B9C9D9E9F12A12B18A18B18C18D18E18F18G···18L
order1222333466666999999121218181818181818···18
size11654224182246622244418182224446···6

33 irreducible representations

dim111122222222224444
type++++++++++++++++
imageC1C2C2C2S3S3D4D6D6D9D12C3⋊D4D18C9⋊D4S32C3⋊D12S3×D9C9⋊D12
kernelC9⋊D12C3×Dic9S3×C18C2×C9⋊S3Dic9S3×C6C3×C9C18C3×C6D6C9C32C6C3C6C3C2C1
# reps111111111322361133

Matrix representation of C9⋊D12 in GL4(𝔽37) generated by

1000
0100
001726
00116
,
5500
321000
0001
0010
,
1000
13600
00036
00360
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,17,11,0,0,26,6],[5,32,0,0,5,10,0,0,0,0,0,1,0,0,1,0],[1,1,0,0,0,36,0,0,0,0,0,36,0,0,36,0] >;

C9⋊D12 in GAP, Magma, Sage, TeX

C_9\rtimes D_{12}
% in TeX

G:=Group("C9:D12");
// GroupNames label

G:=SmallGroup(216,32);
// by ID

G=gap.SmallGroup(216,32);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,73,31,1065,453,1444,2603]);
// Polycyclic

G:=Group<a,b,c|a^9=b^12=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽