Copied to
clipboard

G = C18.D6order 216 = 23·33

3rd non-split extension by C18 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, A-group

Aliases: C18.3D6, C6.3D18, Dic32D9, Dic92S3, C9⋊S3⋊C4, C6.3S32, C91(C4×S3), C31(C4×D9), C2.2(S3×D9), (C3×C6).24D6, (C9×Dic3)⋊3C2, (C3×Dic9)⋊1C2, C32.3(C4×S3), (C3×C18).3C22, (C3×Dic3).5S3, C3.1(C6.D6), (C2×C9⋊S3).C2, (C3×C9)⋊2(C2×C4), SmallGroup(216,28)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C18.D6
C1C3C32C3×C9C3×C18C9×Dic3 — C18.D6
C3×C9 — C18.D6
C1C2

Generators and relations for C18.D6
 G = < a,b,c | a18=c2=1, b6=a9, bab-1=cac=a-1, cbc=b5 >

Subgroups: 338 in 58 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, C9, C9, C32, Dic3, Dic3, C12, D6, D9, C18, C18, C3⋊S3, C3×C6, C4×S3, C3×C9, Dic9, C36, D18, C3×Dic3, C3×Dic3, C2×C3⋊S3, C9⋊S3, C3×C18, C4×D9, C6.D6, C3×Dic9, C9×Dic3, C2×C9⋊S3, C18.D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, D9, C4×S3, D18, S32, C4×D9, C6.D6, S3×D9, C18.D6

Smallest permutation representation of C18.D6
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 29 16 32 13 35 10 20 7 23 4 26)(2 28 17 31 14 34 11 19 8 22 5 25)(3 27 18 30 15 33 12 36 9 21 6 24)
(1 7)(2 6)(3 5)(8 18)(9 17)(10 16)(11 15)(12 14)(19 21)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,29,16,32,13,35,10,20,7,23,4,26)(2,28,17,31,14,34,11,19,8,22,5,25)(3,27,18,30,15,33,12,36,9,21,6,24), (1,7)(2,6)(3,5)(8,18)(9,17)(10,16)(11,15)(12,14)(19,21)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,29,16,32,13,35,10,20,7,23,4,26)(2,28,17,31,14,34,11,19,8,22,5,25)(3,27,18,30,15,33,12,36,9,21,6,24), (1,7)(2,6)(3,5)(8,18)(9,17)(10,16)(11,15)(12,14)(19,21)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,29,16,32,13,35,10,20,7,23,4,26),(2,28,17,31,14,34,11,19,8,22,5,25),(3,27,18,30,15,33,12,36,9,21,6,24)], [(1,7),(2,6),(3,5),(8,18),(9,17),(10,16),(11,15),(12,14),(19,21),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30)]])

C18.D6 is a maximal subgroup of   Dic65D9  Dic18⋊S3  Dic9.D6  C4×S3×D9  D18.3D6  Dic3.D18  D18⋊D6
C18.D6 is a maximal quotient of   C36.38D6  C36.40D6  Dic3×Dic9  C18.Dic6  C6.18D36

36 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C9A9B9C9D9E9F12A12B12C12D18A18B18C18D18E18F36A···36F
order122233344446669999991212121218181818181836···36
size11272722433992242224446618182224446···6

36 irreducible representations

dim111112222222224444
type++++++++++++++
imageC1C2C2C2C4S3S3D6D6D9C4×S3C4×S3D18C4×D9S32C6.D6S3×D9C18.D6
kernelC18.D6C3×Dic9C9×Dic3C2×C9⋊S3C9⋊S3Dic9C3×Dic3C18C3×C6Dic3C9C32C6C3C6C3C2C1
# reps111141111322361133

Matrix representation of C18.D6 in GL4(𝔽37) generated by

36000
03600
00206
003126
,
31600
31000
0001
0010
,
36000
36100
00036
00360
G:=sub<GL(4,GF(37))| [36,0,0,0,0,36,0,0,0,0,20,31,0,0,6,26],[31,31,0,0,6,0,0,0,0,0,0,1,0,0,1,0],[36,36,0,0,0,1,0,0,0,0,0,36,0,0,36,0] >;

C18.D6 in GAP, Magma, Sage, TeX

C_{18}.D_6
% in TeX

G:=Group("C18.D6");
// GroupNames label

G:=SmallGroup(216,28);
// by ID

G=gap.SmallGroup(216,28);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,31,1065,453,1444,2603]);
// Polycyclic

G:=Group<a,b,c|a^18=c^2=1,b^6=a^9,b*a*b^-1=c*a*c=a^-1,c*b*c=b^5>;
// generators/relations

׿
×
𝔽