Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=S3

Direct product G=N×Q with N=C3×Dic3 and Q=S3
dρLabelID
C3×S3×Dic3244C3xS3xDic3216,119

Semidirect products G=N:Q with N=C3×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1S3 = C338D4φ: S3/C3C2 ⊆ Out C3×Dic336(C3xDic3):1S3216,129
(C3×Dic3)⋊2S3 = Dic3×C3⋊S3φ: S3/C3C2 ⊆ Out C3×Dic372(C3xDic3):2S3216,125
(C3×Dic3)⋊3S3 = C338(C2×C4)φ: S3/C3C2 ⊆ Out C3×Dic336(C3xDic3):3S3216,126
(C3×Dic3)⋊4S3 = C3×C3⋊D12φ: S3/C3C2 ⊆ Out C3×Dic3244(C3xDic3):4S3216,122
(C3×Dic3)⋊5S3 = C3×C6.D6φ: trivial image244(C3xDic3):5S3216,120

Non-split extensions G=N.Q with N=C3×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1S3 = C9⋊Dic6φ: S3/C3C2 ⊆ Out C3×Dic3724-(C3xDic3).1S3216,26
(C3×Dic3).2S3 = C3⋊D36φ: S3/C3C2 ⊆ Out C3×Dic3364+(C3xDic3).2S3216,29
(C3×Dic3).3S3 = C334Q8φ: S3/C3C2 ⊆ Out C3×Dic372(C3xDic3).3S3216,130
(C3×Dic3).4S3 = Dic3×D9φ: S3/C3C2 ⊆ Out C3×Dic3724-(C3xDic3).4S3216,27
(C3×Dic3).5S3 = C18.D6φ: S3/C3C2 ⊆ Out C3×Dic3364+(C3xDic3).5S3216,28
(C3×Dic3).6S3 = C3×C322Q8φ: S3/C3C2 ⊆ Out C3×Dic3244(C3xDic3).6S3216,123

׿
×
𝔽