Copied to
clipboard

G = C3⋊D36order 216 = 23·33

The semidirect product of C3 and D36 acting via D36/D18=C2

metabelian, supersoluble, monomial

Aliases: C32D36, Dic3⋊D9, D181S3, C18.4D6, C6.4D18, C32.2D12, C6.4S32, (C3×C9)⋊1D4, (C6×D9)⋊1C2, C2.5(S3×D9), C91(C3⋊D4), (C3×C6).25D6, (C9×Dic3)⋊1C2, (C3×C18).4C22, (C3×Dic3).2S3, C3.1(C3⋊D12), (C2×C9⋊S3)⋊1C2, SmallGroup(216,29)

Series: Derived Chief Lower central Upper central

C1C3×C18 — C3⋊D36
C1C3C32C3×C9C3×C18C9×Dic3 — C3⋊D36
C3×C9C3×C18 — C3⋊D36
C1C2

Generators and relations for C3⋊D36
 G = < a,b,c | a3=b36=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 390 in 58 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C9, C9, C32, Dic3, C12, D6, C2×C6, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, D12, C3⋊D4, C3×C9, C36, D18, D18, C3×Dic3, S3×C6, C2×C3⋊S3, C3×D9, C9⋊S3, C3×C18, D36, C3⋊D12, C9×Dic3, C6×D9, C2×C9⋊S3, C3⋊D36
Quotients: C1, C2, C22, S3, D4, D6, D9, D12, C3⋊D4, D18, S32, D36, C3⋊D12, S3×D9, C3⋊D36

Smallest permutation representation of C3⋊D36
On 36 points
Generators in S36
(1 13 25)(2 26 14)(3 15 27)(4 28 16)(5 17 29)(6 30 18)(7 19 31)(8 32 20)(9 21 33)(10 34 22)(11 23 35)(12 36 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 9)(2 8)(3 7)(4 6)(10 36)(11 35)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)

G:=sub<Sym(36)| (1,13,25)(2,26,14)(3,15,27)(4,28,16)(5,17,29)(6,30,18)(7,19,31)(8,32,20)(9,21,33)(10,34,22)(11,23,35)(12,36,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)>;

G:=Group( (1,13,25)(2,26,14)(3,15,27)(4,28,16)(5,17,29)(6,30,18)(7,19,31)(8,32,20)(9,21,33)(10,34,22)(11,23,35)(12,36,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24) );

G=PermutationGroup([[(1,13,25),(2,26,14),(3,15,27),(4,28,16),(5,17,29),(6,30,18),(7,19,31),(8,32,20),(9,21,33),(10,34,22),(11,23,35),(12,36,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,9),(2,8),(3,7),(4,6),(10,36),(11,35),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24)]])

C3⋊D36 is a maximal subgroup of   D18.D6  Dic65D9  D6.D18  S3×D36  D18.3D6  D9×C3⋊D4  D18⋊D6
C3⋊D36 is a maximal quotient of   D36.S3  C6.D36  C3⋊D72  C3⋊Dic36  Dic3⋊Dic9  D18⋊Dic3  C6.18D36

33 conjugacy classes

class 1 2A2B2C3A3B3C 4 6A6B6C6D6E9A9B9C9D9E9F12A12B18A18B18C18D18E18F36A···36F
order1222333466666999999121218181818181836···36
size11185422462241818222444662224446···6

33 irreducible representations

dim111122222222224444
type+++++++++++++++++
imageC1C2C2C2S3S3D4D6D6D9C3⋊D4D12D18D36S32C3⋊D12S3×D9C3⋊D36
kernelC3⋊D36C9×Dic3C6×D9C2×C9⋊S3D18C3×Dic3C3×C9C18C3×C6Dic3C9C32C6C3C6C3C2C1
# reps111111111322361133

Matrix representation of C3⋊D36 in GL4(𝔽37) generated by

03600
13600
0010
0001
,
143000
72300
003120
001711
,
0100
1000
00617
001131
G:=sub<GL(4,GF(37))| [0,1,0,0,36,36,0,0,0,0,1,0,0,0,0,1],[14,7,0,0,30,23,0,0,0,0,31,17,0,0,20,11],[0,1,0,0,1,0,0,0,0,0,6,11,0,0,17,31] >;

C3⋊D36 in GAP, Magma, Sage, TeX

C_3\rtimes D_{36}
% in TeX

G:=Group("C3:D36");
// GroupNames label

G:=SmallGroup(216,29);
// by ID

G=gap.SmallGroup(216,29);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,1065,453,1444,2603]);
// Polycyclic

G:=Group<a,b,c|a^3=b^36=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽