metabelian, supersoluble, monomial
Aliases: C3⋊2D36, Dic3⋊D9, D18⋊1S3, C18.4D6, C6.4D18, C32.2D12, C6.4S32, (C3×C9)⋊1D4, (C6×D9)⋊1C2, C2.5(S3×D9), C9⋊1(C3⋊D4), (C3×C6).25D6, (C9×Dic3)⋊1C2, (C3×C18).4C22, (C3×Dic3).2S3, C3.1(C3⋊D12), (C2×C9⋊S3)⋊1C2, SmallGroup(216,29)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D36
G = < a,b,c | a3=b36=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 390 in 58 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C9, C9, C32, Dic3, C12, D6, C2×C6, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, D12, C3⋊D4, C3×C9, C36, D18, D18, C3×Dic3, S3×C6, C2×C3⋊S3, C3×D9, C9⋊S3, C3×C18, D36, C3⋊D12, C9×Dic3, C6×D9, C2×C9⋊S3, C3⋊D36
Quotients: C1, C2, C22, S3, D4, D6, D9, D12, C3⋊D4, D18, S32, D36, C3⋊D12, S3×D9, C3⋊D36
(1 13 25)(2 26 14)(3 15 27)(4 28 16)(5 17 29)(6 30 18)(7 19 31)(8 32 20)(9 21 33)(10 34 22)(11 23 35)(12 36 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 9)(2 8)(3 7)(4 6)(10 36)(11 35)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)
G:=sub<Sym(36)| (1,13,25)(2,26,14)(3,15,27)(4,28,16)(5,17,29)(6,30,18)(7,19,31)(8,32,20)(9,21,33)(10,34,22)(11,23,35)(12,36,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)>;
G:=Group( (1,13,25)(2,26,14)(3,15,27)(4,28,16)(5,17,29)(6,30,18)(7,19,31)(8,32,20)(9,21,33)(10,34,22)(11,23,35)(12,36,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24) );
G=PermutationGroup([[(1,13,25),(2,26,14),(3,15,27),(4,28,16),(5,17,29),(6,30,18),(7,19,31),(8,32,20),(9,21,33),(10,34,22),(11,23,35),(12,36,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,9),(2,8),(3,7),(4,6),(10,36),(11,35),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24)]])
C3⋊D36 is a maximal subgroup of
D18.D6 Dic6⋊5D9 D6.D18 S3×D36 D18.3D6 D9×C3⋊D4 D18⋊D6
C3⋊D36 is a maximal quotient of D36.S3 C6.D36 C3⋊D72 C3⋊Dic36 Dic3⋊Dic9 D18⋊Dic3 C6.18D36
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 6A | 6B | 6C | 6D | 6E | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 18A | 18B | 18C | 18D | 18E | 18F | 36A | ··· | 36F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 36 | ··· | 36 |
size | 1 | 1 | 18 | 54 | 2 | 2 | 4 | 6 | 2 | 2 | 4 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | ··· | 6 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D9 | C3⋊D4 | D12 | D18 | D36 | S32 | C3⋊D12 | S3×D9 | C3⋊D36 |
kernel | C3⋊D36 | C9×Dic3 | C6×D9 | C2×C9⋊S3 | D18 | C3×Dic3 | C3×C9 | C18 | C3×C6 | Dic3 | C9 | C32 | C6 | C3 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 6 | 1 | 1 | 3 | 3 |
Matrix representation of C3⋊D36 ►in GL4(𝔽37) generated by
0 | 36 | 0 | 0 |
1 | 36 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
14 | 30 | 0 | 0 |
7 | 23 | 0 | 0 |
0 | 0 | 31 | 20 |
0 | 0 | 17 | 11 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 6 | 17 |
0 | 0 | 11 | 31 |
G:=sub<GL(4,GF(37))| [0,1,0,0,36,36,0,0,0,0,1,0,0,0,0,1],[14,7,0,0,30,23,0,0,0,0,31,17,0,0,20,11],[0,1,0,0,1,0,0,0,0,0,6,11,0,0,17,31] >;
C3⋊D36 in GAP, Magma, Sage, TeX
C_3\rtimes D_{36}
% in TeX
G:=Group("C3:D36");
// GroupNames label
G:=SmallGroup(216,29);
// by ID
G=gap.SmallGroup(216,29);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,1065,453,1444,2603]);
// Polycyclic
G:=Group<a,b,c|a^3=b^36=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations