extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×Dic3) = C3×C9⋊C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | 2 | C6.1(C3xDic3) | 216,12 |
C6.2(C3×Dic3) = He3⋊3C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | 6 | C6.2(C3xDic3) | 216,14 |
C6.3(C3×Dic3) = C9⋊C24 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | 6 | C6.3(C3xDic3) | 216,15 |
C6.4(C3×Dic3) = C6×Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.4(C3xDic3) | 216,55 |
C6.5(C3×Dic3) = C2×C32⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.5(C3xDic3) | 216,59 |
C6.6(C3×Dic3) = C2×C9⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.6(C3xDic3) | 216,61 |
C6.7(C3×Dic3) = C3×C32⋊4C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.7(C3xDic3) | 216,83 |
C6.8(C3×Dic3) = C9×C3⋊C8 | central extension (φ=1) | 72 | 2 | C6.8(C3xDic3) | 216,13 |
C6.9(C3×Dic3) = Dic3×C18 | central extension (φ=1) | 72 | | C6.9(C3xDic3) | 216,56 |
C6.10(C3×Dic3) = C32×C3⋊C8 | central extension (φ=1) | 72 | | C6.10(C3xDic3) | 216,82 |