Copied to
clipboard

G = C11×C7⋊C3order 231 = 3·7·11

Direct product of C11 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C11×C7⋊C3, C7⋊C33, C77⋊C3, SmallGroup(231,1)

Series: Derived Chief Lower central Upper central

C1C7 — C11×C7⋊C3
C1C7C77 — C11×C7⋊C3
C7 — C11×C7⋊C3
C1C11

Generators and relations for C11×C7⋊C3
 G = < a,b,c | a11=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >

7C3
7C33

Smallest permutation representation of C11×C7⋊C3
On 77 points
Generators in S77
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)
(1 38 48 28 15 60 70)(2 39 49 29 16 61 71)(3 40 50 30 17 62 72)(4 41 51 31 18 63 73)(5 42 52 32 19 64 74)(6 43 53 33 20 65 75)(7 44 54 23 21 66 76)(8 34 55 24 22 56 77)(9 35 45 25 12 57 67)(10 36 46 26 13 58 68)(11 37 47 27 14 59 69)
(12 35 45)(13 36 46)(14 37 47)(15 38 48)(16 39 49)(17 40 50)(18 41 51)(19 42 52)(20 43 53)(21 44 54)(22 34 55)(23 76 66)(24 77 56)(25 67 57)(26 68 58)(27 69 59)(28 70 60)(29 71 61)(30 72 62)(31 73 63)(32 74 64)(33 75 65)

G:=sub<Sym(77)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77), (1,38,48,28,15,60,70)(2,39,49,29,16,61,71)(3,40,50,30,17,62,72)(4,41,51,31,18,63,73)(5,42,52,32,19,64,74)(6,43,53,33,20,65,75)(7,44,54,23,21,66,76)(8,34,55,24,22,56,77)(9,35,45,25,12,57,67)(10,36,46,26,13,58,68)(11,37,47,27,14,59,69), (12,35,45)(13,36,46)(14,37,47)(15,38,48)(16,39,49)(17,40,50)(18,41,51)(19,42,52)(20,43,53)(21,44,54)(22,34,55)(23,76,66)(24,77,56)(25,67,57)(26,68,58)(27,69,59)(28,70,60)(29,71,61)(30,72,62)(31,73,63)(32,74,64)(33,75,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77), (1,38,48,28,15,60,70)(2,39,49,29,16,61,71)(3,40,50,30,17,62,72)(4,41,51,31,18,63,73)(5,42,52,32,19,64,74)(6,43,53,33,20,65,75)(7,44,54,23,21,66,76)(8,34,55,24,22,56,77)(9,35,45,25,12,57,67)(10,36,46,26,13,58,68)(11,37,47,27,14,59,69), (12,35,45)(13,36,46)(14,37,47)(15,38,48)(16,39,49)(17,40,50)(18,41,51)(19,42,52)(20,43,53)(21,44,54)(22,34,55)(23,76,66)(24,77,56)(25,67,57)(26,68,58)(27,69,59)(28,70,60)(29,71,61)(30,72,62)(31,73,63)(32,74,64)(33,75,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77)], [(1,38,48,28,15,60,70),(2,39,49,29,16,61,71),(3,40,50,30,17,62,72),(4,41,51,31,18,63,73),(5,42,52,32,19,64,74),(6,43,53,33,20,65,75),(7,44,54,23,21,66,76),(8,34,55,24,22,56,77),(9,35,45,25,12,57,67),(10,36,46,26,13,58,68),(11,37,47,27,14,59,69)], [(12,35,45),(13,36,46),(14,37,47),(15,38,48),(16,39,49),(17,40,50),(18,41,51),(19,42,52),(20,43,53),(21,44,54),(22,34,55),(23,76,66),(24,77,56),(25,67,57),(26,68,58),(27,69,59),(28,70,60),(29,71,61),(30,72,62),(31,73,63),(32,74,64),(33,75,65)]])

C11×C7⋊C3 is a maximal subgroup of   C11⋊F7

55 conjugacy classes

class 1 3A3B7A7B11A···11J33A···33T77A···77T
order1337711···1133···3377···77
size177331···17···73···3

55 irreducible representations

dim111133
type+
imageC1C3C11C33C7⋊C3C11×C7⋊C3
kernelC11×C7⋊C3C77C7⋊C3C7C11C1
# reps121020220

Matrix representation of C11×C7⋊C3 in GL3(𝔽463) generated by

15800
01580
00158
,
001
10383
01382
,
10382
00462
01462
G:=sub<GL(3,GF(463))| [158,0,0,0,158,0,0,0,158],[0,1,0,0,0,1,1,383,382],[1,0,0,0,0,1,382,462,462] >;

C11×C7⋊C3 in GAP, Magma, Sage, TeX

C_{11}\times C_7\rtimes C_3
% in TeX

G:=Group("C11xC7:C3");
// GroupNames label

G:=SmallGroup(231,1);
// by ID

G=gap.SmallGroup(231,1);
# by ID

G:=PCGroup([3,-3,-11,-7,596]);
// Polycyclic

G:=Group<a,b,c|a^11=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C11×C7⋊C3 in TeX

׿
×
𝔽